自发染色体重排 (CR) 在物种形成、基因组进化和作物驯化中起着至关重要的作用。为了能够利用 CR 的育种潜力,人们开始通过 X 射线照射将染色体片段化,从而进行植物染色体工程。随着 CRISPR/Cas 系统的兴起,人们可以高效地在任意染色体位置诱导双链断裂 (DSB)。这使得预先设计的染色体工程达到了全新的水平。可以通过诱导染色体易位来打破特定基因之间的遗传连锁。可以恢复抑制遗传交换的自然倒位以进行育种。此外,人们已经开发出各种通过缩小常规标准 A 染色体或额外 B 染色体来构建微型染色体的方法,这些方法可以作为未来植物生物技术的载体。最近,人们可以构建一个功能性的合成着丝粒。此外,人们已经建立了不同的基因组单倍体化方法,其中一些方法基于着丝粒操作。未来,我们期望看到更复杂的重组,这些重组可以与重组酶等先前开发的工程技术相结合。染色体工程可能有助于重新定义遗传连锁群、改变染色体数量、在微型载货染色体上堆叠有益基因,或建立遗传隔离以避免杂交。
“可靠性标准”是指委员会根据本节批准的一项要求,旨在确保大容量电力系统可靠运行。该术语包括对现有大容量电力系统设施运行的要求……术语“可靠运行”是指在设备和电力系统热、电压和稳定性限制范围内运行大容量电力系统的元件,以便不会因突然干扰(包括网络安全事件或系统元件意外故障)而导致此类系统不稳定、不受控制的分离或连锁故障。12
北美电网面临着许多挑战,而这些挑战并非其设计和制造所能够应对的。拥塞和非典型电力流有可能使系统不堪重负,同时对更高可靠性、更好的安全性和保护的需求也在增加。由于运输、通信、金融和其他关键基础设施都依赖安全可靠的电力供应来提供能源和控制,因此电网故障的潜在影响从未如此巨大。由于现代基础设施系统高度互联,任何一个地方的状况变化都可能对大片地区产生直接影响,而局部干扰的影响甚至可能随着其在网络中传播而被放大。大规模连锁故障可能几乎瞬间发生,并给偏远地区或看似不相关的企业带来后果。例如,在北美电网中,输电线连接着该大陆的所有发电和配电。 20 世纪 90 年代末和 2003 年夏季发生的大面积停电事件凸显了电网易受连锁效应影响的弱点。正如白宫科技政策办公室主任约翰·马伯格博士 2002 年 6 月 24 日在众议院科学委员会上指出的那样,由于关键基础设施之间的相互依赖性,再加上服务提供商纯粹的商业重点,风险的增加已经得到承认。✔ 美国的经济和国家安全正在变得越来越重要
雷特综合征 (RTT) 是一种 X 连锁神经发育障碍,由年轻女性 X 染色体上的甲基 CpG 结合蛋白 2 ( MECP2 ) 的功能丧失杂合突变引起。从失活的 X 染色体 (Xi) 重新激活沉默的野生型 MECP2 等位基因代表着对女性 RTT 患者的一个有希望的治疗机会。在这里,我们应用了一种多重表观基因组编辑方法,从 RTT 人胚胎干细胞 (hESC) 和衍生的神经元中重新激活 Xi 中的 MECP2。通过 dCas9-Tet1 和靶向单向导 RNA 对 MECP2 启动子进行去甲基化,从 RTT hESC 中的 Xi 重新激活 MECP2,而在转录水平上没有可检测到的脱靶效应。来自甲基化编辑的 RTT hESC 的神经元维持了 MECP2 的再激活,并逆转了 RTT 的两个特征:体细胞尺寸变小和电生理异常。在 RTT 神经元中,通过 dCpf1-CTCF(与 CCCTC 结合因子融合的催化死亡 Cpf1)和靶 CRISPR RNA 隔离甲基化编辑的 MECP2 基因位点可增强 MECP2 的再激活并挽救 RTT 相关的神经元缺陷,为表观基因组编辑治疗 RTT 和其他潜在的显性 X 连锁疾病提供了概念验证研究。
中华人民共和国也在积极探索人工智能技术。中国使用人工智能技术的一个例子是创建单一标准化信息系统,包括电子卡和居民养老金档案。该项目由宁波市卫生计生委和开发商东软熙康共同实施,是一个利用人工智能算法和大数据的开放平台,连接各大医疗机构、医生、连锁药房和保险公司。已有100多家医疗机构接入该系统,优化了医疗成本,医疗服务覆盖人数逐步增加。
Maguire:我对镇区决定解雇几名消防员并关闭 Lake Pointe 消防站感到失望。普利茅斯东区的居民感觉与社区其他居民隔绝。我担心消防部门长期人手不足导致响应时间变慢。我们为加班费和诉讼花费了大量资金。消防部门人员减少的连锁效应包括我们的房产价值可能下降、保险费率上升,以及人们认为普利茅斯镇不是一个理想的居住/经商之地。
不幸的是,气球升空后不久就坠入海中。为了减轻负载,气球吊篮可以脱离水面,人们向气球上扔沙子。这一策略奏效了,但重量过轻导致转向系统失效,气球上升到 700 米的危险高度。低气压加速了氢气逸出,导致气球在几天后坠毁,引发了一系列连锁问题。人们做好了应对单个威胁的充分准备,但未能预见到这些威胁的累积效应以及由此产生的一系列风险。
大量 X 连锁基因逃避 X 染色体失活,并与独特的表观遗传特征相关。与 X 逃避密切相关的一种表观遗传修饰是启动子区域的 DNA 甲基化降低。在这里,我们通过编辑 CDKL5 启动子上的 DNA 甲基化,从人类类神经元细胞中沉默的 X 染色体等位基因中创建了一种人工逃避,CDKL5 是一种导致婴儿癫痫的基因。我们发现,使用三个向导 RNA 将 TET1 的催化域与靶向 CDKL5 启动子的 dCas9 融合,结合从 CpG 二核苷酸中去除甲基,可显著重新激活失活等位基因。令人惊讶的是,我们证明 TET1 和 VP64 转录激活因子的共表达对非活性等位基因的重新激活具有协同作用,使活性等位基因的水平超过 60%。我们进一步使用多组学评估来确定转录组和甲基化组上的潜在脱靶。我们发现 dCas9 效应物的协同传递对靶位点具有高度选择性。我们的研究结果进一步阐明了与逃避 X 染色体失活相关的 DNA 甲基化降低的因果作用。了解与逃避 X 染色体失活相关的表观遗传学对患有 X 连锁疾病的人有很大的帮助。
大量 X 连锁基因逃避 X 染色体失活,并与独特的表观遗传特征相关。与 X 逃避密切相关的一种表观遗传修饰是启动子区域的 DNA 甲基化降低。在这里,我们通过编辑 CDKL5 启动子上的 DNA 甲基化,从人类类神经元细胞中沉默的 X 染色体等位基因中创建了一种人工逃避,CDKL5 是一种导致婴儿癫痫的基因。我们发现,使用三个向导 RNA 将 TET1 的催化域与靶向 CDKL5 启动子的 dCas9 融合,结合从 CpG 二核苷酸中去除甲基,可显著重新激活失活等位基因。令人惊讶的是,我们证明 TET1 和 VP64 转录激活因子的共表达对非活性等位基因的重新激活具有协同作用,使活性等位基因的水平超过 60%。我们进一步使用多组学评估来确定转录组和甲基化组上的潜在脱靶。我们发现 dCas9 效应物的协同传递对靶位点具有高度选择性。我们的研究结果进一步阐明了与逃避 X 染色体失活相关的 DNA 甲基化降低的因果作用。了解与逃避 X 染色体失活相关的表观遗传学对患有 X 连锁疾病的人有很大的帮助。