交互式系统的btract开发人员都有各种交互技术可供选择,每个相互作用的技术都具有个人优势和局限性,以考虑到所考虑的任务,上下文和用户。尽管尚未确定桌面,移动和虚拟现实应用程序的分类法,但尚未建立增强现实(AR)分类法。然而,最新的沉浸式AR技术(即,戴头饰或基于投影的AR),例如具有集成的手势和语音传感器的不受束缚的耳机的出现,已经引入了额外的输入方式,因此已经引入了新型的多模式互动方法。为提供当前沉浸式AR系统的交互技术概述,我们对2016年至2021年之间的出版物进行了文献综述。基于44篇相关论文,我们开发了一项涉及两个识别维度的分类学分类法 - 任务和方式。我们进一步提出了一种迭代分类性开发方法对人类计算机相互作用领域的改编。最后,我们讨论了观察到的趋势和对未来工作的影响。
摘要 - LARGE语言模型(LLM)由于能够使用简单的自然语言提示执行临时自然语言处理(NLP)任务,因此获得了广泛的普及。呼吁LLM的一部分是他们对公众的可接近性,包括NLP技术专长的人。但是,提示在语言结构,上下文和其他语义方面可能会有很大的不同,并且修改其中一个或多个方面可能会导致任务绩效的显着差异。非专家用户可能会发现确定提高提示所需的更改是一项挑战,尤其是当他们缺乏特定领域的知识和适当的反馈时。为了应对这一挑战,我们提出了p rompt iD,一个视觉分析系统,旨在通过探索,扰动,测试和迭代进行交互,完善和测试提示。p rompt a ID使用协调的可视化效果,使用户可以通过三种策略改进提示:关键字扰动,释义扰动以及获得最佳的context中文字中的最佳示例。p rompt a ID是通过涉及NLP专家的预先研究设计的,并通过强大的混合方法用户研究进行了评估。我们的调查结果表明,P ROMPT I ID可以帮助用户在认知开销较少的情况下迭代提示,并在建议的帮助下产生多样的提示,并分析生成的提示的性能,同时超过现有的最新提示提示性能的互动。
摘要 —建筑物占一次能源的近 40% 和温室气体排放的 36%,是推动气候变化的主要因素之一。减少建筑物能耗,实现零能耗建筑是确保实现未来气候和能源目标的重要支柱。然而,由于建筑负荷和客户舒适度需求的高度不确定性,以及建筑热特性的极端非线性,开发有效的零能耗建筑能源管理 (BEM) 技术面临着巨大的挑战。本文提出了一种基于学习的新型迭代物联网系统来应对这些挑战,以实现互联建筑 BEM 的零能耗目标。首先,基于物联网的 BEM 系统中的所有建筑都与聚合器共享其运行数据。其次,聚合器使用这些历史数据训练基于深度确定性策略梯度方法的深度强化学习模型。学习模型生成预冷或预热控制动作,以实现建筑供暖通风和空调 (HVAC) 系统的零能耗 BEM。第三,为解决暖通空调系统与建筑内部热增益负荷之间的耦合问题,开发了一种迭代优化算法,将基于物理和基于学习的模型相结合,通过合理安排建筑负荷、电动汽车充电周期和储能系统,最大限度地减少现场太阳能光伏发电量与实际建筑能耗之间的偏差。最后,考虑客户的舒适度要求,制定最佳负荷运行计划。然后,所有连接的建筑物根据聚合器发布的负荷运行计划运行其负荷。通过使用来自 Pecan Street 项目的真实建筑数据进行模拟,验证了所提出的基于学习的迭代物联网系统。
• 生态锦标赛:第二届锦标赛的参赛者(加上随机)用作由 1000“代”组成的“进化”锦标赛的初始条件。第 G 代开始时种群池中 T 类策略的数量设置为等于上一代 G-1 中 T 类策略赢得的总分数。
计算和实验能力的提高正在迅速增加日常生成的科学数据量。在受内存和计算强度限制的应用中,过大的数据集可能会阻碍科学发现,因此数据缩减成为数据驱动方法的关键组成部分。数据集在两个方向上增长:数据点的数量和维数。降维通常旨在在低维空间中描述每个数据样本,而这里的重点是减少数据点的数量。提出了一种选择数据点的策略,使它们均匀地跨越数据的相空间。所提出的算法依赖于估计数据的概率图并使用它来构建接受概率。当仅使用数据集的一小部分来构建概率图时,使用迭代方法来准确估计稀有数据点的概率。不是对相空间进行分组来估计概率图,而是用正则化流来近似其函数形式。因此,该方法自然可以扩展到高维数据集。所提出的框架被证明是在拥有大量数据时实现数据高效机器学习的可行途径。
摘要 - 这项工作是解决量子仪器的数据驱动建模问题并启用模型可以解释的。首先,提出了一种数据驱动的物理迭代(DPI)建模方法来解决具有基于现象学速率方程描述的量子系统的动态行为的复杂物理系统的建模问题。第二,提出的DPI建模方法结合了快速采样技术,该技术被泰勒平均值定理证明是可行的,以解决非自治系统的建模问题。第三,最小二乘标准和大量法则证明了所提出的方法的融合。最后,将DPI建模方法部署在光学泵送磁力计(OPM)和自旋交换宽松量表(SERFCM)中,在完成量子仪器建模的同时,估算了系统的物理参数。数值模拟和实际实验支持理论结果。
摘要:全变分(TV)方法已被用于实现机载扫描雷达在保持目标轮廓的超分辨成像。迭代重加权范数(IRN)方法是一种通过求解一系列最小加权L2范数问题来处理最小Lp范数问题的算法,已被用于求解TV范数。然而,在求解过程中,IRN方法每次迭代都需要更新权重项和结果项,涉及大矩阵的乘法和求逆,计算量巨大,严重制约了TV成像方法的应用。本文通过分析迭代过程中涉及矩阵的结构特点,提出了一种基于适当矩阵分块的高效方法,将大矩阵的乘法和求逆转化为多个小矩阵的计算,从而加速算法。所提方法称为IRN-FTV方法,比IRN-TV方法更节省时间,尤其适用于高维观测场景。数值结果表明,所提出的IRN-FTV方法具有较好的计算效率,且性能没有下降。
摘要:基于利用数据可视化技术的先前开发的部分合成数据生成算法,该研究扩展了新型算法以生成完全合成的表格医疗保健数据。在这种增强的形式中,该算法是基于生成对抗网络(GAN)或变分自动编码器(VAE)的常规方法的替代方法。通过迭代应用原始方法,该适应算法采用UMAP(均匀的歧管近似和投影),一种维度降低技术,通过低维聚类来验证生成的样品。这种方法已成功地应用于三个医疗领域:前列腺癌,乳腺癌和心血管疾病。生成的合成数据已被严格评估,以获得保真度和效用。结果表明,基于UMAP的算法在不同情况下优于基于gan和vae的生成方法。在保真度评估中,它在不同属性的真实数据和合成数据的累积分布函数之间达到了较小的最大距离。在实用程序评估中,基于UMAP的合成数据集增强了机器学习模型性能,尤其是在分类任务中。总而言之,此方法代表了一种可实现安全,高质量合成医疗保健数据的强大解决方案,从而有效地解决了数据稀缺挑战。
1 Novo Nordisk生物可持续性基金会,丹麦技术大学,公里。Lyngby,丹麦2号生物技术与生物医学系,丹麦技术大学,公里。Lyngby,丹麦,丹麦技术大学应用数学与计算机科学系3。Lyngby,丹麦,4联合生物能源研究所,加利福尼亚州埃默里维尔,美国,美国5个生物系统与工程部,劳伦斯·伯克利国家实验室,伯克利,美国加利福尼亚州伯克利,美国6化学和生物分子工程系6深圳高级技术学院合成生物学研究所,中国深圳
摘要 - 这项工作提出了自主迭代运动学习(AI-mole),该方法使具有未知的非线性动力学系统可以自主学习解决参考跟踪任务。该方法迭代地将输入轨迹应用于未知动力学,基于实验数据训练高斯过程模型,并利用该模型更新输入轨迹,直到达到所需的跟踪效果为止。与现有方法不同,所提出的方法会自动确定必要的参数,即ai-mole Works插件播放,而无需手动参数调整。此外,AI-mole仅需要输入/输出信息,但也可以利用可用的状态信息来加速学习。通常仅在模拟或使用手动调谐参数的单个现实世界测试床上验证其他方法,但我们介绍了在三个不同的现实世界机器人上验证所提出的方法的前所未有的结果,总共九个不同的参考跟踪任务而无需任何先前的模型信息或手动参数调谐。在所有系统和任务上,AI摩尔迅速学习以跟踪参考文献,而无需任何手动参数调整,即使仅提供输入/输出信息。
