随着航空航天事业的快速发展,飞机的热舒适性受到越来越多的关注。然而客舱内环境与地面建筑环境有很大不同[4-6]。客舱环境的典型特征是低压、低湿度、缺乏新鲜空气和密封性要求高。每个乘客平均只有1至2 m3的空间[7],远远小于一般的办公环境。商用客机的巡航高度通常在5490 m至12500 m之间[8]。在这个高度,特别是在较高的海拔地区,大气的含水量很低。客舱中的水分主要来自乘客的汗液蒸发,因此客舱内的相对湿度通常低于20%[9]。这种低相对湿度会引起眼干、呼吸道阻塞等不适症状[10,11]。近期大量研究表明客舱个性化送风系统能有效改善旅客周围空气质量,有效降低旅客呼吸区污染物[12-15]。目前,对地面建筑室内环境热舒适的相关研究和文献综述较多[16-18],但对飞机客舱环境热舒适的研究较少。因此,本文试图对人体热舒适研究领域的工作进行总结,旨在为航空旅客提供更便捷、更高效的乘机服务。
联络通道是地铁隧道内常见结构,为事故隧道人员快速疏散至对面安全隧道提供通道。地铁隧道联络通道通风是通过隧道两侧通风系统的协同作用实现的。同时,列车堵塞、车厢内热量积聚等因素也会影响地铁隧道内烟气运动,前者需要进一步细化,以预测防止烟气进入地铁隧道联络通道所需的临界速度和驱动力。通过一维理论分析和全尺寸冷烟实验,研究了两侧隧道风机送风参数与联络通道通风速度之间的关系,提出了隧道联络通道烟气控制对侧安全隧道风机选型计算模型。通过数值模拟,量化了列车位置、火灾热释放速率和主隧道通风速度对联络通道临界速度的影响。结果表明:畅通条件下联络通道内临界速度大于阻塞条件下的临界速度,且临界速度在畅通和阻塞条件下均表现出相对稳定性。在无量纲分析的基础上,提出了一种分段函数来预测隧道联络通道内临界速度。研究结果可为类似结构的隧道防火防烟措施的实施提供有益指导。
适应情况 • 存在检测器持续检查房间内是否有人,并在预设的最小流量和占用流量之间调节气流。 • CO 2 传感器持续测量房间内的空气质量。当房间有人时,控制器会在预设的占用流量和最大允许流量之间可变地调节气流,以便为当前的占用人数提供足够高的气流。 • 压力传感器测量送风和排风侧的静态气压。压力读数用于平衡送风和排风以及控制风门叶片位置。 • 位于冷冻水供应管上的冷凝传感器可感应任何实际的冷凝沉淀。如果表面形成了冷凝,则连接到控制器的所有冷却阀执行器都会关闭,以停止冷凝水沉淀。当这种情况发生时,控制器会增加送风流量,以补偿容量损失,直到冷凝沉淀停止,水冷可以恢复。• 可以将窗户触点连接到系统,以感应窗户是打开还是关闭。如果窗户被证明是打开的,控制器会调整系统,关闭冷却、加热和通风,以避免不必要的能量损失。例如,如果有人在寒冷的冬夜把窗户打开,系统有一个内置的防霜冻保护功能,当室温降至 10°C 以下时,暖气就会启动。
致主编:COVID-19 疫情已感染超过 300 万患者,导致超过 230,000 人死亡,并极大地影响了数百万人的生活 [1]。新加坡是中国以外最早受到该病毒影响的国家之一。积极的接触者追踪和隔离以及国家立法帮助在过去 10 周的疫情中将病毒传播限制在 1400 多人。尽管如此,社区传播仍在增加,发现了大量无关病例。这使得必须实施部分封锁以实施疏远措施。与此同时,医护人员 (HCW) 正在迅速提升能力,为危机恶化做准备。COVID-19 已被证实可通过飞沫和潜在的气溶胶生成程序 (AGP) 传播 [2]。保护医护人员的健康至关重要。为数不多的保护措施之一是严格遵守个人防护设备 (PPE)。除了实用的医用口罩和 N95 口罩外,动力送风净化呼吸器 (PAPR) 也是我们的另一种武器。由于生产和供应链中断,全球范围内一次性 N95 口罩短缺,这一点非常重要。保护主义政策和囤积也大大减少了口罩的供应量 [ 3 ]。盛港综合医院是 2018 年 8 月新开业的一家拥有 1400 张床位的医院。到目前为止,我们在一家“混合 COVID”医院中处理了 748 例 COVID-19 阳性病例。目前,医院的医护人员中 0% 感染了
随着航空航天事业的快速发展,飞机的热舒适性受到越来越多的关注。然而客舱内环境与地面建筑环境有很大不同[4-6]。客舱环境的典型特征是低压、低湿度、缺乏新鲜空气和密封性要求高,每个乘客平均只有1至2 m 3 的空间[7],远远小于一般的办公环境。商用客机的巡航高度通常在5490 m至12500 m之间[8]。在这个高度,特别是在较高的海拔地区,大气的含水量很低。客舱中的水分主要来自乘客的汗液蒸发,因此客舱内的相对湿度通常低于20%[9]。这种低相对湿度会引起眼干、呼吸道阻塞等不适症状[10,11]。近期大量研究表明客舱个性化送风系统可有效改善旅客周围空气质量,有效降低旅客呼吸区污染物[12-15]。目前,关于地面建筑室内环境热舒适的相关研究及文献综述较多[16-18],但针对飞机客舱环境热舒适的研究较少。因此,本文试图对人体热舒适领域中与飞机客舱热舒适研究相关的工作进行总结。第二部分探讨了飞机客舱热舒适的影响因素,并从环境因素和人为因素两个方面介绍了近年来的研究进展。第三部分从均匀、稳态环境下的典型热感觉模型和非均匀、瞬态环境下的新型热感觉模型两个方面介绍了热感觉预测模型。第四部分介绍自适应热舒适的研究进展。第五部分介绍了飞机客舱热舒适性研究的进展及展望,主要介绍了飞机客舱通风的研究发展。
过去十年,对数据中心和网络服务的需求迅速增长。然而,由于更高效的电子硬件、向超大规模和云数据中心的迁移以及更高效的冷却基础设施等,近年来电力需求已经趋于稳定。本文对冷却技术进行了关键概述并讨论了研究差距。数据通信设施中的冷却技术大致可分为风冷和液冷系统。架空/地板下送风、热/冷通道布局和热/冷通道遏制是优化风冷系统性能的主要策略。架空地板架构已在数据通信设施中得到广泛采用,但存在大量气流泄漏(约 25-50%)。研究发现,最佳通风系统是硬地板设计,采用架空冷风输送和热风回风管道,而不是基于房间的送风和回风。冷通道遏制可以更好地降低机架的最高入口温度并抑制冷却系统故障时的温升,而热通道遏制可以提供更低的机架平均入口温度和更小的标准差,并且受服务器周围气密性的影响更小。随着机架功率密度超过 10 kW/机架且热流超过 100 kW/cm 2 ,传统的风冷系统不再是可行的热管理解决方案。喷雾冷却、冲击射流、浸没冷却、液冷微通道和热管等液体冷却方法是克服风冷系统容量限制的新兴技术之一。对于浸没冷却,过渡到过冷两相流沸腾、通过添加微结构或不规则性来创造更多的成核位点和更大的传热表面积来增强传热以及利用纳米流体是受到学者关注的突出增强策略。将电力电子模块浸入液体中可使热阻降低至空气冷却系统的 25%,或微通道或喷雾冷却等液体冷却系统的 30-50%。根据现有的冷却系统、总体热负荷和热点,热管系统可以作为独立单元或与空气冷却系统结合使用,即所谓的混合系统,为数据中心提供服务。与典型的空气冷却系统相比,混合系统可以分别降低 37-58% 和 20-70% 的年度冷却负荷系数和能耗。