摘要 具有里德堡介导相互作用的单个原子组装阵列为多体自旋哈密顿量的模拟以及基于通用门的量子信息处理的实现提供了强大的平台。我们展示了在微透镜产生的可重构几何多点陷阱阵列中首次实现里德堡激发和受控相互作用。我们利用原子逐个组装来确定性地制备预定义的铷里德堡原子二维结构,这些结构具有精确已知的相互分离和可选择的相互作用强度。通过调整几何形状和所讨论的里德堡状态,可以访问从弱相互作用到强耦合的参数范围。我们表征了 57D 5 / 2 状态下非相互作用原子簇的同时相干激发,并分析了实验参数和局限性。对于利用 87D 5 / 2 状态优化的里德堡阻塞配置,我们观察到集体增强的拉比振荡。
人类的视野比在分布外情景下表现出的鲁棒性更高。它已经通过逐个合成的分析来猜想这种鲁棒性益处。我们的论文通过通过渲染和能力算法在神经特征上进行近似分析,以一致的方式制定三重视觉任务。在这项工作中,我们引入了神经丝线可变形的网格(NTDM),该网格涉及具有变形几何形状的OBJECT模型,该模型允许对摄像机参数和对象几何形状进行优化。可变形的网格被参数化为神经场,并被全表面神经纹理图所覆盖,该图被训练以具有空间歧视性。在推断过程中,我们使用可区分渲染来最大程度地重建目标特征映射,从而提取测试图像的特征图,然后对模型的3D姿势和形状参数进行优化。我们表明,在现实世界图像,甚至在挑战分布外情景(例如闭塞和主要转变)上进行评估时,我们的分析比传统的神经网络更强大。在经常性能测试测试时,我们的算法与标准算法具有竞争力。
与此同时,促使更多公司自愿披露的运动也在进行中。最终,促使自愿披露的运动几乎变得毫无意义,因为大多数拥有大量石油和天然气活动的州都颁布了强制性披露规则。但自愿披露运动至少产生了一项具有持久意义的进展。2011 年 4 月,地下水保护委员会 69 和州际石油天然气契约委员会 70 联合推出了 FracFocus 71 网站,公司可以自愿披露美国任何地方每个油井使用的压裂液的成分。即使在大多数重要的石油和天然气州颁布了强制性披露法规之后,FracFocus 仍然具有相关性,原因是几个州的法规要求公司通过直接向 FracFocus 发布信息来进行披露,而不是直接将披露信息发送给监管机构。72 例如,德克萨斯州立法机构于 2011 年中期颁布了一项立法,73 指示德克萨斯州铁路委员会起草法规,要求公司通过发布信息逐个披露压裂液成分。
抗菌素耐药性一直是全球面临的健康挑战,威胁着我们控制和治疗危及生命的细菌感染的能力。尽管人们不断努力寻找新药或抗生素替代品,但在过去三十年中,没有一类新的抗生素或其替代品获得临床批准。抗生素和非抗生素化合物的组合可以抑制细菌耐药性决定因素或增强抗生素活性,为对抗多重耐药细菌提供了一种可持续有效的策略。在这篇综述中,我们简要概述了抗生素发现和细菌耐药性发展的共同进化。我们总结了药物相互作用,揭示了将非抗生素药物重新用作潜在抗生素佐剂的技巧,包括讨论分类和作用机制,以及报告新的筛选平台。然后提出了一种逐个病原体的方法来强调药物重新利用的关键价值及其治疗潜力。最后,讨论了药物组合策略的一般优势、挑战和发展趋势。
控制面板具有八个固定式抗议者入室盗窃区域,可针对面积,出口/入口延迟,内部,追随者,日间区域,钟声,火灾选项,传感器手表,Swinger关机,区域和其他各种功能进行编程。最多支持96个带有可选区域曝光模块和4区键盘的区域。最多支持96个单独编码的用户,每个用户具有可编程授权级别。支持三个车载继电器输出,最多96个外部继电器输出。支持三个键盘恐慌:火灾,警察和辅助支持多达8个独立区域分区。最多96个用户最多支持8个单独的访问站。使用GEM-X10KIT和PC04接口提供多达64个可分开的可调X-10设备。英语提示和系统状态消息。用户注定的区域描述,可根据需要重新编程。支持2线和4线烟雾探测器。报告警报,恢复和逐个区域。255活动时间表
网格支持的CFE是CFE,该CFE作为默认电力服务或公用事业或电动服务提供商的电力混合物的一部分交付给联邦客户。如实施说明的第4.2.4节所述,网格供应的CFE是四种CFE策略之一 - 以及购买的CFE,现场CFE和购买的能源属性证书(EACS) - 可以在供应商中逐个销售或堆叠的能源属性证书(EACS)。实施指示规定,联邦能源管理计划(FEMP)将使用Egrid来计算代理商可以作为网格支持的CFE包含的CFE剩余网格混合物2,直到基于市场数据获得更精致的计算方法(第4.2.4节)。对于许多联邦设施,已获得新的市场数据,该数据支持了一种精致且首选的方法来计算网格供应的CFE。新的“供应商证明”方法旨在根据州和地方法律或法规捕获供应商现有的网格混合物中的CFE。代理商可以使用电力供应商证明的CFE百分比,而不是FEMP计算的残留网格混合百分比,只要电力供应商
固态纳米孔传感的一个长期未实现的目标是在转位过程中实现 DNA 的平面外电传感和控制,这是实现碱基逐个棘轮的先决条件,从而实现生物纳米孔中的 DNA 测序。二维 (2D) 异质结构能够以原子层精度构建平面外电子器件,是用作电传感膜的理想但尚未探索的候选材料。在这里,我们展示了一种纳米孔架构,使用由 n 型 MoS 2 上的 p 型 WSe 2 组成的垂直 2D 异质结二极管。该二极管表现出由离子势调制的整流层间隧穿电流,而异质结势则相互整流通过纳米孔的离子传输。我们同时使用离子和二极管电流实现了 DNA 转位的检测,并展示了 2.3 倍的静电减慢的转位速度。封装层可实现稳健的操作,同时保留用于传感的原子级锐利 2D 异质界面的空间分辨率。这些结果为单个生物分子的非平面电传感和控制建立了范例。
新基础设施项目的快速发展要求在新的环境中加速部署新材料。材料 4.0 对于实现这些目标至关重要。多年来,数字化在材料领域的应用一直处于研究的前沿,但目前尚无统一的方法来描述该领域的框架,从而创造出发展空间。这与人们对数字孪生 (DT) 的更广泛期望相混淆,因为数字孪生是所有这些问题的可能答案。问题在于,没有公认的组件 DT 定义,以及它应该包含哪些信息以及如何在整个产品生命周期中实施它。在本立场文件中,明确区分了“制造 DT”和“组件 DT”;前者是后者的起始边界条件。为了实现这一点,我们还讨论了引入数字线程作为将数据从制造传递到服务的关键概念。给出了从材料角度定义 DT 开发框架的阶段,承认了在学术界创造新理解与在工业中逐个组件应用这些知识之间的区别。确定了组件 DT 广泛应用的许多挑战;所有这些都会导致属性和位置的不确定性,解决这些问题需要在提供安全相关的材料属性数据时做出判断。
I. 引言 蒙特卡罗 (MC) 工具广泛应用于辐射对电子产品的影响 [1],尤其是高能加速器应用。对于后者,用于模拟辐射效应的 MC 代码主要以两种互补的方式使用:第一,用于模拟加速器周围产生的复杂辐射环境 [2]–[4];第二,用于模拟此类辐射环境与微电子元件之间的相互作用。对于单粒子效应 (SEE),第二种类型的模拟涉及对微米体积中逐个事件的能量沉积进行评分,代表 SEE 敏感体积 (SV)。相对于互补实验数据,此类模拟的关键附加值在于,它们可以提供加速器环境中存在的非常广泛的粒子和能量的 SEE 概率,而这些粒子和能量通常无法通过实验获得。在欧洲核子研究中心的辐射到电子 (R2E) 项目 [5] 中,SEE MC 模拟被广泛用于模拟高 Z 材料对 SEE 响应能量依赖性的影响 [6]、重离子核相互作用的影响 [7]、低能质子的贡献以及其他单带电粒子
新基础设施项目的快速发展需要在新的环境中加速部署新材料。材料 4.0 对于实现这些目标至关重要。多年来,数字化在材料领域的应用一直处于研究的前沿,但目前尚无统一的方法来描述该领域的框架,从而形成了一些发展空间。这与人们对数字孪生 (DT) 作为所有这些问题的可能答案的更广泛期望相矛盾。问题在于,没有组件 DT 的公认定义,以及它应该包含哪些信息以及如何在整个产品生命周期中实施它。在本立场文件中,明确区分了“制造 DT”和“组件 DT”;前者是后者的起始边界条件。为了实现这一点,我们还讨论了引入数字线程作为数据在制造和服务过程中传递的关键概念。本文给出了从材料角度定义 DT 开发框架的阶段,承认了在学术界创造新理解与在工业中逐个组件应用这些知识之间的区别。作者确定了组件 DT 的广泛应用面临的许多挑战;所有这些都会导致属性和位置的不确定性,解决这些问题需要在提供安全相关材料属性数据时做出判断。