双方之间的通信场景可以通过首先将消息编码到作为通信物理介质的物理系统的某些状态中,然后通过测量系统状态对消息进行解码来实现。我们表明,在最简单的情况下,已经可以检测到量子系统相对于经典系统的明确、无限的优势。我们通过构建一系列具有操作意义的通信任务来实现这一点,一方面,每个任务都可以仅使用单个量子位来实现,但另一方面,经典实现需要一个无限大的经典系统。此外,我们表明,尽管借助共享随机性的额外资源,所提出的通信任务可以通过相同大小的量子和经典系统来实现,但经典实现所需的协调操作数量也会无限增长。特别是,没有有限的存储空间可用于存储使用经典系统实现所有可能的量子通信任务所需的所有协调操作。因此,共享随机性不能被视为免费资源。
具有对其配置进行相干控制的量子设备网络在量子信息处理(包括量子通信、计算和传感)方面具有巨大的优势。到目前为止,对这些优势的研究都假设控制系统最初与网络处理的数据不相关。在这里,我们探索了数据和控制之间量子关联的威力,展示了两个通信任务,当且仅当发送方与控制网络配置的第三方(“控制器”)共享先前的纠缠时,才可以通过信息擦除通道完成这两个通信任务。第一个任务是传输经典消息而不向控制器泄露信息。第二个任务是与接收器建立二分纠缠,或者更一般地说,与多个空间分离的接收器建立多分纠缠。
在各方之间共享多方量子纠缠可以执行各种安全通信任务。其中,会议密钥协商(CKA) - 密钥分发到多方的扩展 - 最近受到了广泛关注。有趣的是,CKA 还可以以保护参与方身份的方式执行,从而提供匿名性。在这项工作中,我们提出了一种在高度实用的网络环境中实现的三方匿名 CKA 协议。具体而言,使用一排量子节点在所有节点之间构建线性簇状态,然后使用该状态在任意三个节点之间匿名建立密钥。节点只需与邻居共享最大纠缠对,因此避免了中央服务器共享纠缠态的必要性。这种线性链设置使我们的协议成为未来量子网络实现的绝佳候选。我们明确证明我们的协议可以保护参与者的身份不受彼此影响,并对有限范围内的密钥速率进行分析,有助于寻找超越点对点的网络架构的可行量子通信任务。
GPS 导航技术为海军空中、水面、水下和武器平台提供可靠的定位、导航和授时 (APNT) 服务;通过改进的加密技术、抗干扰性能、反欺骗算法、强大的 PNT 精度和分布,在电子战挑战环境中提供对 GPS 信号的访问。对 GPS 的日益依赖使得 GPS 保护工作和 APNT 的需求变得更加重要,使作战人员能够在有争议的环境中执行关键的战斗、导航和通信任务。
渠道容量的概念捕获了可以通过给定的通信渠道传输的信息率,让它为量子或经典,给定一系列有关该通信如何发生的进一步规则。在量子通信的背景下,自然而然地,量子通道是关注的重点。我们将保持相对较短的时间,但仍定义主要数量并陈述了几个关键结果。还有几个引人注目的见解,我们将对这些见解进行评论。我们还将以此为借口正确定义量子协议的渐近率,包括定义可蒸馏的纠缠的定义,可以将其视为上一章的附录。实际上,从历史上看,Quantum Shannon理论是量子信息理论的第一个子领域,当时仍然认为量子效应是通信任务的限制,而不是可以将它们用于用户的优势。它仍然是一个积极探索的领域,主要是从数学物理学的角度来看。