2012 年 6 月她开始在俄勒冈健康与科学大学 (OHSU) 担任助理教授,并于 2022 年 7 月晋升为教授,目前是道格拉斯斯特兰特聘教授。她实验室的当前重点是开发新型荧光探针,以改善针对患者的宏观和微观成像。在过去十年中,她一直致力于开发近红外 (NIR) 神经特异性造影剂,用于临床转化以指导外科手术。她和她的团队成功开发了同类首创的 NIR 神经特异性小分子造影剂,这些造影剂正在临床转化以辅助手术期间的神经识别和可视化。这项技术也从她的实验室分拆出来成立了一家初创公司 Trace Biosciences,该公司专注于这种新型术中成像技术的临床转化。
为了帮助诊断,可能需要在孩子接受 MRI 扫描时注射造影剂。造影剂将通过扫描前插入的套管注射。套管是一种细塑料管,通常放置在手背皮下。局部麻醉霜(EMLA 或 Ametop,有时称为“神奇霜”)可以在注射前涂抹在孩子的手或手臂上,这样就不会太疼。这种方法对 90% 的孩子都很有效。当孩子坐在您的腿上时,您可以插入套管。
医学成像是诊断的重要因素。它可用于诊断患者、区分疾病阶段和监测治疗方案。尽管有不同的成像技术可用,但 MRI 比其他成像方式更敏感,因为它能够穿透深层组织,从而对患病器官的解剖、结构和分子水平进行成像。因此,它可以用作疾病分期的筛查工具。成像的重要组成部分之一是造影剂,用于提高 MRI 技术的灵敏度。虽然有不同类型的造影剂,但氧化铁基纳米粒子 (IONPS) 被广泛使用,因为它们易于配制、功能化、生物相容性好且成本低廉。除了用作造影剂外,它们还被用作药物载体,用于治疗不同类型的疾病,包括癌症、心血管疾病、神经系统疾病、自身免疫性疾病和传染病。在过去的二十年里,纳米诊疗技术取得了长足的进步,其中IONPs被配制成携带药物并在一个系统中用作造影剂,以便它们可以用于图像引导治疗并监测患病组织的实际治疗反应。该技术可用于将患者分为有反应者和无反应者,减少药物不良毒性并实现个性化治疗。然而,纳米诊疗技术的成功取决于几个因素,包括识别可以在配制过程中针对IONPs的疾病相关生物标志物。虽然纳米诊疗技术的临床转化存在许多挑战,但它仍然有潜力应用于个性化治疗策略。在这篇评论文章中,我们讨论了MRI技术和IONPs在疾病诊断中的应用以及纳米诊疗技术在个性化医疗中的应用。
材料和方法 这项回顾性单中心研究考虑纳入 2019 年 11 月至 2021 年 3 月在 Gustave Roussy 癌症园区(法国维尔瑞夫)获取的共 250 张多参数脑 MRI。定义了独立的训练(107 例,年龄 55 岁±14 岁,58 名女性)和测试(79 例,年龄 59 岁±14 岁,41 名女性)样本。患者患有神经胶质瘤、脑转移、脑膜瘤或无增强病变。在所有病例中均获取了具有可变翻转角的梯度回波和涡轮自旋回波对比后 T1 序列。对于形成训练样本的病例,还获取了使用 0.025 mmol/kg 造影剂注射的“低剂量”对比后梯度回波 T1 图像。以标准剂量 T1 MRI 为参考,训练了一个深度神经网络来合成增强低剂量 T1 采集。训练完成后,对比增强网络用于处理测试梯度回波 T1 图像。然后由两名经验丰富的神经放射科医生进行读片,以评估原始和处理后的 T1 MRI 序列的对比增强和病变检测性能,以快速自旋回波序列为参考。结果对于增强病变的病例,处理后图像的对比噪声比(44.5 比 9.1 和 16.8,p<.001)、病变与脑组织比(1.66 比 1.31 和 1.44,p<.001)和对比增强百分比(112.4% 比 85.6% 和 92.2%,p<.001)均优于原始梯度回波和参考快速自旋回波 T1 序列。两位读者都更喜欢处理后的 T1 的整体图像质量(平均评分为 3.4/4 比 2.7/4,p<.001)。最后,对于大于 10 毫米的病变,所提出的处理方法将梯度回波 T1 MRI 的平均灵敏度从 88% 提高到 96%(p=.008*),而误检率则没有差异(两种情况下均为 0.02/例,p>.99)。考虑所有大于 5 毫米的病变时观察到了相同的效果:灵敏度从 70% 提高到 85%(p<.001*),而误检率保持相似(0.04/例 vs 0.06/例,p=.48)。如果包括所有病变,无论其大小如何,原始和处理后的 T1 图像的灵敏度分别为 59% 和 75%(p<.001*),相应的误检率为 0.05/例和 0.14/例(p=.06)。
许多小分子抗癌剂由于药代动力学差,常常无法有效检测或治疗癌症。使用纳米粒子作为载体可以改善这一状况,因为纳米粒子尺寸较大,可以减少清除率并提高在肿瘤内的滞留率,但也会减慢它们从循环系统转移到肿瘤间质的速度。在这里,我们展示了一种替代策略,即分子造影剂和工程纳米粒子在肿瘤内进行体内分子组装,使较小成分的快速流入和较大成分的高滞留率相结合。该策略可使荧光造影剂在肿瘤中快速蓄积,比荧光标记的大分子或纳米粒子对照快 16 倍和 8 倍。诊断灵敏度是被动靶向纳米粒子的 3.0 倍,并且这一改善在注射 3 小时后实现。体内组装方法的优势在于小分子药物可在肿瘤内快速积累、循环时间要求更短、可在保持肿瘤成像灵敏度的同时进行全身清除,并且肿瘤中的纳米粒子锚可用于改变造影剂、治疗剂和其他纳米粒子的药代动力学。这项研究展示了纳米粒子在肿瘤内的分子组装,为未来设计用于医疗的纳米材料提供了新的基础。确定癌症的正确预后和治疗方案需要对肿瘤进行准确的分期和监测。目前的检测策略通常将灵敏的成像方式与造影剂相结合(1、2)。然而,这些方法在许多情况下无法检测到病变,通常是因为成像对比度较差(2)。这可以通过将造影剂与聚合物或纳米粒子连接起来的肿瘤靶向策略来改善。纳米粒子非常适合用作肿瘤靶向载体,因为它们的体内行为由其设计决定,并且它们能够通过增强的渗透性和滞留效应泄漏到肿瘤中并在肿瘤中积聚(3 – 7)。尽管有这些优势,但仍有几个障碍限制了基于纳米粒子的靶向策略进行有效的肿瘤检测。被动靶向需要大直径的粒子,但这同时限制了向肿瘤的运输,并且只有在循环中经过数小时后才会发生积聚(8 – 10)。主动靶向纳米粒子设计可以实现更快的积聚(11 – 13),但可能不适合检测抗原未表征或异质性因此不可靠的病变。最后,纳米粒子在体内循环和持续时间较长,引发了对诊断或治疗药物毒性的潜在担忧。因此,开发一种靶向策略将造影剂快速聚集到肿瘤中,而无需依赖抗原表征,也不会在体内长期存在,这将是有利的。纳米粒子通过肿瘤细胞外基质的运动主要依赖于扩散 (8)。我们实验室最近的一项体内研究表明,扩散运输受到较大粒径的限制,粒径为 100 纳米时可忽略不计。发现直径为 80 纳米的纳米粒子缓慢渗透到间质中,并在注射 24 小时后定位在渗漏血管的几个细胞长度内