纯方位估计是目标跟踪中的基本问题之一,也是具有挑战性的问题。与雷达跟踪的情况一样,偏移或位置偏差的存在会加剧纯方位估计的挑战。对各种传感器偏差进行建模并非易事,文献中专门针对纯方位跟踪的研究并不多。本文讨论了纯方位传感器中偏移偏差的建模以及随后的带偏差补偿的多目标跟踪。偏差估计在融合节点处处理,各个传感器以关联测量报告 (AMR) 或纯角度轨迹的形式向该节点报告其本地轨迹。该建模基于多传感器方法,可以有效处理监视区域中随时间变化的目标数量。所提出的算法可得出最大似然偏差估计器。还推导出相应的 Cram´er-Rao 下限,以量化所提出的方法或任何其他算法可以实现的理论精度。最后,给出了不同分布式跟踪场景的模拟结果,以证明所提出方法的能力。为了证明所提出的方法即使在出现误报和漏检的情况下也能发挥作用,还给出了集中式跟踪场景的模拟结果,其中本地传感器发送所有测量值(而不是 AMR 或本地轨道)。
干涉数据与来自地面摄影测量和运动结构 3D 点云。在确定内在和外在方向参数后,将地面雷达干涉测量获得的数据投影到点云上,然后投影到初始照片上。在照片上可视化边坡变形测量值可提供易于理解和分发的信息产品,尤其是对于难以接近的目标区域,例如陡峭的岩壁或岩石坠落区。比较了四种方法的参考步骤和最终可视化的适用性和误差传播:(a) 使用测量相机和立体图像摄影测量的经典方法;(b) 使用测量相机获取的图像,使用运动结构自动处理;(c) 使用数码紧凑型相机获取的图像,使用运动结构处理;(d) 无标记方法,使用数码紧凑型相机获取的图像,使用运动结构,无需人工地面控制点。完全无标记方法可用于高分辨率雷达干涉测量的可视化,有助于生成可供解释的可视化产品。
摘要 机载遥感由于系统部署的灵活性而在农业监测中具有重要的应用。实际应用中的主要障碍是其高成本。为了降低成本,可以使用小型空中平台(例如微型无人机(mini-UAV))上的单个相机来组装多光谱系统。在这种情况下,即使经过仔细调整,相机仍可能存在移位和旋转错位。平台飞行时会捕获连续的帧。因此,在生成任何商业产品以支持实际决策之前,必须进行单帧内的多波段配准和帧间镶嵌以获得整个监测区域的联合配准多光谱图像。在本文中,我们提出了实现此目标的自动算法。这些算法对于没有明显特征的图像场景特别有用。自动和手动评估均证实了所开发的算法在整体平坦地形无明显特征的多传感器数据融合中的有效性。
本文旨在对近期和经典的图像配准方法进行回顾。图像配准是将在不同时间、从不同视点和/或由不同传感器拍摄的同一场景的图像(两个或多个)叠加的过程。配准在几何上对齐两个图像(参考图像和感测图像)。根据所审查的方法的性质(基于区域和基于特征)以及图像配准过程的四个基本步骤对所审查的方法进行分类:特征检测、特征匹配、映射函数设计以及图像变换和重采样。本文提到了这些方法的主要贡献、优点和缺点。还讨论了图像配准的问题和未来研究的展望。本文的主要目标是为参与图像配准的研究人员提供全面的参考资料,无论其特定应用领域如何。q 2003 Elsevier B.V. 保留所有权利。