摘要 肝糖异生增加被认为是导致非胰岛素依赖型糖尿病 (NIDDM) 患者空腹血糖升高的一个重要因素。磷酸烯醇式丙酮酸羧激酶 (GTP) (PEPCK;EC 4.1.1.32) 是一种糖异生调节酶。为了研究 PEPCK 基因表达在 NIDDM 发展中的作用,我们培育了转基因小鼠系,这些小鼠在其自身启动子的控制下表达 PEPCK 微基因。转基因小鼠血糖升高,血清胰岛素浓度较高。此外,还检测到肝糖原含量和肌肉葡萄糖转运蛋白 GLUT-4 基因表达的变化。PEPCK 基因的过度表达导致原代培养肝细胞中丙酮酸产生葡萄糖增加。当进行腹膜内葡萄糖耐量测试时,血糖水平高于正常小鼠的血糖水平。该动物模型显示肝脏葡萄糖生成率的原始改变可能导致胰岛素抵抗和 NIDDM。
非标准缩写和首字母缩写2-DG,2-脱氧葡萄糖; kg,α-ketoglutarate; ADP,腺苷二磷酸; AMP,单磷酸腺苷; ATP,三磷酸腺苷; Angii,血管紧张素II; Cr,肌酸; DHAP,二羟基丙酮磷酸盐;粮农组织,脂肪酸氧化; FBP,果糖双磷酸酯; G6P,6-磷酸葡萄糖; GSD,糖原储存疾病; KD,生酮饮食; Kegg,基因和基因组的京都百科全书; LF,低脂; MPC,线粒体丙酮酸载体; NAD+和NADH,氧化和还原烟酰胺腺嘌呤二核苷酸; NADP+和NADPH,氧化和减少烟酰胺腺嘌呤二核苷酸磷酸盐; PCR,磷酸盐; PEP,磷酸烯醇丙酮酸; P/M,丙酮酸/苹果酸; R5p,5磷酸核糖; RT-QPCR,逆转录定量PCR,SEDO7P,SEDOHEPTULOSE 7-磷酸盐; UDP,尿苷二磷酸盐; UHPLC,超高性能液相色谱
©作者2024。由牛津大学出版社代表神经肿瘤学会出版。这是根据Creative Commons Attribution-非商业许可(https://creativecommons.org/licenses/by-nc/4.0/)分发的开放访问文章,允许在任何媒介中在任何媒介中进行非商业重复使用,分发和复制,前提是原始工作被正确引用。有关商业重复使用,请联系reprints@oup.com,以获取转载和翻译权以获取转载。所有其他权限都可以通过我们的restrionlink服务通过我们网站上文章页面上的“权限链接”获得,请联系journals.permissions.permissions@oup.com。
摘要越来越多的证据支持了线粒体功能障碍可能代表帕金森氏病(PD)的关键特征的想法。能源生产的中央调节剂线粒体也参与了其他几种基本功能,例如细胞死亡途径和神经炎症,使它们成为PD管理的潜在治疗靶点。有趣的是,与PD相关的最新研究报告了胰岛素敏化剂MSDC-0160靶向线粒体丙酮酸载体(MPC)的神经保护作用。作为丙酮酸进入线粒体基质的唯一进入点,MPC在能量代谢中起着至关重要的作用,在PD中受到影响。因此,这项研究旨在提供有关MSDC-0160神经保护作用的机制的见解。我们研究了慢性MSDC-0160治疗在单侧6-OHDA PD大鼠中的行为,细胞和代谢影响。我们通过使用核磁共振光谱(NMR)基于基于的代谢组分学的人的背纹状体活检中的关键线粒体酶表达了线粒体相关的过程。MSDC-0160单侧6-OHDA大鼠的治疗改善了运动行为,减少了多巴胺能神经神经膜的神经神经化,并降低了MTOR活性和神经炎症。同时,MSDC-0160施用强烈修改的能量代谢,这是酮症发生,β氧化和谷氨酸氧化以满足能量需求并维持能量稳态的情况。MSDC-0160通过重组与能量代谢相关的多种途径来发挥其神经保护作用。
丙酮酸羧化酶(PC)与多种疾病有关,包括2型糖尿病,癌症和细菌/病毒感染。但是,目前没有能够在体外和体内精确操纵PC活性的分子工具。本论文描述了1,3二取代的咪唑替替替翁的鉴定和表征,是金黄色葡萄球菌PC的新型有效,选择性和可渗透的变构抑制剂。基于动力学,结构和生物物理数据,假设这类抑制剂可以在PC上的非催化“ EXO结合”位点结合。据报道,此EXO结合位点对于催化至关重要,但以前尚未被认为是可药物的位置。本论文还表明,与未激活的PC相比,变构激活的PC对小分子抑制的敏感性明显较小。这一发现为针对人类PC的小分子抑制剂的发展提出了一个重要的新考虑。由于人类PC需要通过乙酰-COA激活催化活性,因此必须针对PC的变构激活形式进行未来的药物发现工作。最后,提供了体外证据,以反驳最近的说法,即两种天然产物Erianin和Anemoside B4是人类PC的抑制剂。本文提交了一个战略框架,以推动针对人类PC的药物发现。它概述了优化的筛选程序,并探讨了鉴定激活人PC抑制剂的可能途径。总体而言,这项工作大大提高了针对人PC的化学探针的开发,并最终有助于扩大用于研究PC在疾病中作用的可用工具包。
引言急性心肌梗死 (AMI) 是全球范围内重大的公共健康问题、心力衰竭 (HF) 的主要原因和主要死亡原因 (1–3)。AMI 患者的标准治疗是直接经皮冠状动脉介入治疗 (PPCI),以再灌注并恢复缺血心肌的氧合血流 (4, 5)。然而,PPCI 却伴有再灌注损伤,这会加剧组织损伤并增加心肌细胞死亡,导致可挽救的心肌减少。据估计,再灌注损伤约占 AMI 后最终梗死的 50% (4, 6)。尽管经过数十年的研究,但尚无任何药物干预措施成功地转化为常规临床实践以减轻缺血-再灌注 (I/R) 损伤的有害影响 (7–9)。因此,减轻心肌 I/R 损伤仍然是心血管医学中尚未满足的需求,以防止缺血事件后发展为慢性 HF。I/R 的潜在机制复杂且多因素,但动物模型数据表明,缺血性心肌细胞内的线粒体功能障碍是关键因素(10-12)。在 I/R 损伤期间,线粒体功能对心肌细胞维持细胞能量、氧化还原和活力至关重要(13)。I/R 损伤引起的线粒体缺陷可导致线粒体介导的细胞凋亡,包括线粒体膜电位受损(ΔΨ)、钙超载和氧化应激(14, 15)。这被认为是由于 I/R 期间氧气和营养物质供应不连续而导致代谢失衡所致(16, 17)。了解代谢
在真核细胞中,线粒体是内共生器官,与各种细胞过程有关,包括能量消耗,生物合成,信号转移和程序性细胞死亡。1显着,它们是创建三磷酸腺苷(ATP)的主要位置,腺苷三磷酸腺苷(ATP),包括所有生物的通用自由能载体,包括所有五个呼吸链络合物和所有三羧酸周期(TCA)酶。在细胞质和线粒体基质之间的代谢物交换对于执行这些代谢过程是必要的,这些代谢过程仅限于线粒体腔室并保留内部内稳态。电压依赖性阴离子通道允许微小的分子穿过外部线膜。然而,线粒体内膜(IMM)对分子和离子高度渗透,必须依靠特定的转运蛋白和通道来连接细胞质和线粒体的代谢。线粒体载体家族成员执行大部分运输步骤。2其他转运蛋白家族包括线粒体丙酮酸载体(MPC)。3 MPC是一种蛋白质复合物,存在于线粒体内膜中,并负责将丙酮酸从线粒体转运到线粒体基质中,其中丙酮酸转化为乙酰基氧乙烯酶A(乙酰辅酶A)。ace-tyl-coa进入TCA循环,并在其中进一步氧化。另外,线粒体中的丙酮酸也可以通过吡二酸酯羧化酶的羧化来参与糖异生,以产生草乙酸以补充TCA循环。7如上所述,除了被运输到线虫外,丙酮酸还可以通过细胞质中的乳酸脱氢酶(LDH)还原为乳酸。MPC是在1970年代4提出的,最初被称为BRP44L(脑蛋白44样)和BRP44(脑蛋白44)。它在2003年被鉴定在酵母中,并在2012年进一步鉴定在哺乳动物中。3,5,6 MPC是一个相对较小的杂物,由两个亚基组成,分别由12和14 kDa组成,分别为12和14 kDa。
急性肾损伤 (AKI) 涉及肾功能的突然恶化,包括糖尿病在内的多种情况已被确定为危险因素。尽管 AKI 通常会导致死亡,但对其详细机制的了解不足阻碍了有效治疗方法的开发。在 AKI 期间,会发生缺血-再灌注 (IR) 损伤以及随后的活性氧 (ROS) 增加和炎症,并且被认为起着关键作用 [1]。线粒体会产生大量的 ROS,其功能障碍会导致多种代谢紊乱。线粒体是产生细胞能量的主要细胞器,而丙酮酸代谢是线粒体中的关键事件。丙酮酸由细胞质中的糖酵解产生,在有氧条件下,在线粒体中进一步代谢为三磷酸腺苷 (ATP)。在此过程中,丙酮酸转化为乙酰辅酶 A (CoA),后者可用于生成 ATP 或游离脂肪酸。丙酮酸脱氢酶 (PDH) 复合物介导丙酮酸转化为乙酰辅酶 A,该过程受到 ATP、乙酰辅酶 A 和 NADH(烟酰胺腺嘌呤二核苷酸 [NAD]+ 氢 [H])的变构抑制,以及丙酮酸脱氢酶激酶 (PDK1-4) 对 PDH 的磷酸化抑制。相反,腺苷单磷酸、CoA 和 NAD + 变构增加 PDH 活性,丙酮酸脱氢酶磷酸酶 (PDP1 和 PDP2) 对 PDH 的去磷酸化也增加 PDH 活性 [2,3]。韩国庆北国立大学 In-Kyu Lee 团队最近开展的研究表明,丙酮酸脱氢酶
摘要:需要临床需要开发快速的过程支架来修复骨缺损。当前的研究介绍了利用基于熔点的3D打印的骨组织工程硅酸钙/聚二苯二甲酸钙的发展。硅酸钙(CZS)纳米颗粒被添加到多碳酸酯(PCL)多孔支架中,以增强其生物学和机械性能,同时对所得的性质进行了广泛的研究。在样品的熔点中没有发现显着差异,而包含生物陶瓷的样品的结晶温度点从36.1升至40.2°C。根据我们的结果,将CZS含量从0 wt。%(PC40)增加到多孔支架(孔隙率约为55-62%),将抗压强度从2.8 mpa提高到10.9 MPa。此外,SBF溶液中的磷灰石形成能力通过增强CZS百分比而显着增加。根据MTT测试结果,与纯PCL相比,PC40中MG63细胞的生存能力明显改善(约29%)。这些发现表明,3D打印的PCL/CZS复合支架可以成功制造,并显示出作为骨组织工程应用的植入物材料的巨大潜力。
•贫血的临床显着减少(HB↑)•12个月时的输血独立性•≥50%的输血需求(相关时)减少了≥50%的12个月•溶血的降低•外周血(PB)和骨髓(BM)遗传矫正,如载体拷贝数(VCN)