矿物油的电气和环境缺点,传统上用作电力系统中的绝缘液,导致寻找替代品。由蔬菜种子产生的天然酯是最重要的替代品之一。具有较高介电强度的天然酯可以满足超高的电压变压器设计要求。此外,它们可以应对由变压器油具有生物降解性引起的环境问题。这项研究首先将天然酯与其他透射式油进行比较,并解释了天然酯为何脱颖而出。自然酯的基本特性是根据优势和缺点定义的,并且电源系统应用被例证。在文献中广泛使用的纳米颗粒添加的纳米流体的酯和合成,用于改善天然酯的电和热性能,并通过实验应用呈现。天然酯可以在酯化过程中具有更好的氧化稳定性。基于天然酯的纳米流体的AC,DC和Lightning Impulse(LI)断裂电压也平均增强了10%。使用天然酯的这种变电站和实验应用表明,这些环保油可以在许多电力系统设备(尤其是变压器)中提供绝缘要求。关键字:变压器油,动力变压器,液体介电
方法:研究DNA羟基甲基化和发育暴露于常见污染物之间的关系,一个协作的NIEHSSPOSSENSED CONSORERTIUM,Target II启动了纵向小鼠研究,研究了发育范围的研究,以实现人为含有人含量的苯甲酸酯化剂DI(2-甲基甲基甲苯基)的(2-甲基甲苯甲苯甲苯甲状腺己)和dehp)(Dehp)(Dehp)(Dehp)(p),per(dehp)。将饮用水中的25毫克DEHP/kg食物(约5 mg DEHP/kg体重)或32 ppm乙酸的暴露量用于无效的成年雌性小鼠。暴露在繁殖前2周开始,并在整个怀孕和哺乳期继续持续,直到后代21天大。在5个月时,收集了围产期暴露的后代血液和皮质组织,共有25只雄性小鼠和17只雌性小鼠(每组织和暴露于5 - 7)。DNA,并使用羟基甲基化DNA免疫沉淀测序(HMEDIP-SEQ)测量羟甲基。使用0.15的FDR临界值进行了暴露组,组织类型和动物性别的差异峰值和途径分析。
嘌呤和嘧啶的气相色谱分析已经完成,但是它们的挥发性和热稳定性不足以从气相色谱柱中洗脱出来。在气相色谱分析之前,需要用合适的试剂进行衍生化。使用的试剂例如双(三甲基硅基)三氟乙酰胺[12-15],五氟苯甲酰氯,五氟苯磺酰氯或七氟丁酸酐[16],N,N-叔丁基二甲基硅基三氟乙酰胺[13]和N-(叔丁基二甲基硅基)N-甲基三氟乙酰胺[14]。虽然用不同的硅基试剂进行衍生化虽然有效,但需要非水介质进行衍生化。简单且廉价的试剂可以在水相中使用,可能对嘌呤和嘧啶的气相色谱测定有价值。氯甲酸乙酯已被用作水-有机相中的衍生试剂,用于气相色谱测定胺和氨基酸 [17]。Husek 报道了氯甲酸酯作为气相色谱通用试剂的应用 [18],Simek 和 Husek 报道了烷基氯甲酸酯作为酯化试剂的应用 [19]。已经使用氯甲酸酯对多种氨基化合物进行了气相色谱分析 [20]。
许多微生物和酶都具有优先代谢、结合或化学改变外消旋底物的一个对映体,同时保持另一个对映体不变的能力。这种固有特性可以作为检测行星土壤中生物剂的实验基础。高灵敏度气相色谱技术 (1) 已被用于监测原型陆地实验中几种外消旋氨基酸底物的立体特定消耗。在典型的测定中,将土壤 (10 克)、外消旋氨基酸底物 (10 毫克) 和蒸馏水 (10 毫升) 在室温下摇动。不时取出等分试样 (约 1 毫升) 并用水 (10 毫升) 稀释。将土壤离心,并将上清液冻干。用亚硫酰氯-甲醇 (0.4 ml 在 5 ml 中) (2) 酯化并蒸发后,将残留物与 NV-三氟乙酰-L-脯氨酰氯 (0.2 mM) 在二氯甲烷 (2 ml) (1) 中在三乙胺 (0.06 ml) 存在下偶联。洗涤 (H,O) 和干燥 (Na.SO,) 后,将部分溶液 (~2 yl) 注入气相色谱仪。通过计算两种非对映异构体的峰面积,可以快速灵敏地记录未使用的 p/L 氨基酸浓度 (表 1,图 1)。我们的结果表明,底物的 t-对映体优先受到攻击,但不同氨基酸的使用速率不同。土壤热灭菌后立体特异性作用消失的观察结果证实了其中涉及生物过程。
摘要 重组高密度脂蛋白(rHDL)被认为是一种很有前途的在载脂蛋白AI(apoA-I)介导下靶向脑的抗胶质瘤药物载体。然而,盘状rHDL(d-rHDL)在血液中循环时存在的与药物漏出有关的稳定性问题以及随之而来的靶向性降低阻碍了它的广泛应用。本研究旨在通过用单胆固醇戊二酸(MCG)修饰的apoA-I(简称mA)替代胆固醇和apoA-I来开发一种新型稳定的d-rHDL,并评估其变构行为和胶质瘤靶向性。MCG是通过用戊二酸酐酯化胆固醇的羟基而合成的,并通过FI-IR和1H NMR对其进行了表征。 mA组装而成的d-rHDL (简称md-rHDL)具有与新生HDL相似的性质,如微小的粒径和盘状外观。形态学观察和体外释放图表明胆固醇的修饰能有效抑制d-rHDL的重塑。LCAT预处理的bEND.3细胞对md-rHDL的摄取明显高于d-rHDL,这也证明了md-rHDL具有增强的靶向性。此外,apoA-I锚定在md-rHDL上对bEND.3细胞和C6细胞的内吞过程起着关键作用,这意味着它有可能穿过血脑屏障,在脑和胶质瘤中蓄积。这些结果表明,向胆固醇方向进行修饰以提高 d-rHDL 的稳定性是有利的,并且所获得的 md-rHDL 在实现抑制 d-rHDL 重塑以进行脑靶向治疗胶质瘤药物输送方面显示出巨大的潜力。
目的:将不同饱和度的 C18 脂肪酸(硬脂酸、油酸和亚油酸)与醋酸亮丙瑞林(LEU 醋酸盐)的羟基结合,并研究通过自组装纳米颗粒 (L18FNs) 的控制释放和增强渗透性。方法:用苯甲酰氯和 DMAP(4-二甲基氨基吡啶)进行 Yamaguchi 酯化,使脂肪酸与 LEU 的羟基结合。然后将这三种结合物分别命名为硬脂酸结合的 LEU、LSC、油酸结合的 LEU、LOC 和亚油酸结合的 LEU、LLC。使用制备型 HPLC (Prep-HPLC) 纯化结合物 (L18FCs),并通过各种仪器分析进行鉴定。结果:评估了每种 L18FN 的电位、粒度和形态。 LSNs由于饱和脂肪链的疏水性较高,因此zeta电位值相对较低,粒径较大,而LLNs则表现出较高的zeta电位和较小的粒径。在人血浆中,LLC的降解速度最快,累积药物释放量最高。通过Franz扩散池实验分析了L18FNs的渗透性,证实了脂肪酸的饱和度影响LFNs的渗透性。纳米化后,由于粒径较大,LSNs的渗透性并没有显著提高,而LONs和LLNs的渗透性分别是LEU的1.56倍和1.85倍。结论:利用不同饱和度的脂肪酸结合肽类药物,可以通过自组装和物理化学性质的修饰,提供药物的多功能性。关键词:醋酸亮丙瑞林 羟基靶向结合 不同饱和度C18脂肪酸 脂肪酸结合亮丙瑞林 自组装纳米粒子 控制释放 增强渗透性
摘要:Niemann – Pick疾病(NPD)是属于溶酶体储存障碍的罕见常染色体隐性疾病。已经描述了三种类型的NPD:NPD A型,B和C型A型A和B型是由编码鞘磷脂磷酸二酯酶1的基因SMPD1中的突变引起的,因此缺乏酸性鞘磷脂酶活性。这些疾病已被归类为酸鞘磷脂酶缺陷(ASMDS)。NPD C型是由于基因NPC1或NPC2的突变而导致的一种神经系统疾病,导致胆固醇运输和酯化的缺陷。尽管所有三种NPD都可以表现出肺部受累,但肺部疾病在NPD B型中更频繁地发生,通常患有间质肺部疾病,复发性肺部感染和呼吸衰竭。从这个意义上讲,带有支气管 - 肺泡灌洗或活检以及高分辨率计算机断层扫描的支气管镜检查是基本的诊断工具。迄今为止,已经做出了一些努力,为NPD找到有效的疗法,但只有有限的治疗选择。用olipudaseα的酶替代疗法是ASMD患者的第一个也是唯一批准的疾病改良疗法。文献中的ASMD还描述了肺移植和造血干细胞移植。NPD C型中唯一认可的疾病改良疗法是Miglustat,一种底物还原治疗。这篇综述的目的是在遗传基础和肺参与NPD的基础上描述一种最新的现状,重点关注疾病的临床表现,放射学和组织病理学特征,以及可用的治疗选择,并注视着未来治疗策略。
混乱是到目前为止分离的39个大花环的家族,显示了大花环的环尺寸在26至32之间(图1)[1-3]。它们是来自肌肉杆菌纤维素的继发代谢产物(SO CE12),并于1994年由Höfle和Reichenbach的研究组分离出来[4]。由于抑制微管蛋白聚合,所有这些天然产物都表现出非常有效的抗肿瘤活性,并结合了非常强大的细胞毒性,直至对各种人类癌细胞系的皮摩尔活性[5,6]。这种令人兴奋的生物学特征在整个合成和生物学上都对科学界产生了极大的兴趣[7]。此外,它们的巨大生物学效能使它们在个性化医学中非常有吸引力,因为靶向癌症治疗中的抗体 - 药物缀合物(ADC)的有效载荷[8]。我们最近发表了一条灵活而强大的新途径,以合成( - ) - 混乱C 1,在最后游戏中涉及通过Yamaguchi酯化和最终的Yamaguchi Macrolactonization的构建块耦合[9]。这种构建异常核心的强大策略的优势在于,在发生所需的耦合之前,它在每个构件中都提供了高度的多样性,并提供了设计各种异常类似物来研究SAR(结构 - 活动关系)的绝佳机会[10]。基于此策略,我们希望展示我们的努力,并报告有效的合成,以构建具有有效的抗肿瘤活性的非对称异常C 1类似物。这种高度活跃的天然产品的大多数已发表的类似物
迄今为止,文献中描述了多种类型的癌症,许多相关治疗方法也在不断发展。在许多形式的癌症中,观察到脂质代谢(Fritz 等人,2013 年)和甲羟戊酸途径 (MVP) 的失调(Freed-Pastor 等人,2012 年)。胆固醇是细胞膜不可或缺的组成部分,它是胆汁酸、脂蛋白和类固醇激素的前体。它的生物合成受 MVP 控制,而 MVP 控制蛋白质法呢基化和香叶基化。这些翻译后修饰对于 Ras、Rho 或 Rac 蛋白的下游信号传导活性至关重要,这些蛋白属于小 GTPases 超家族 ( Takai 等人,2001 ),参与肿瘤发生、进展 ( Buhaescu 和 Izzedine,2007 )、增殖、迁移和肿瘤细胞存活 ( Kidera 等人,2010 )。与健康细胞一样,癌细胞也会酯化磷脂中的脂肪酸,而磷脂是细胞膜必需成分。这些必需的脂质是通过源自 MVP 的内源性代谢物获得的 ( Notarnicola 等人,2014 )。抑制这一重要过程可能对癌细胞有益,因为它们通常快速增殖,而不会影响太多繁殖速度较慢的健康细胞。他汀类药物能够通过抑制 HMG-CoA 还原酶 (HMGCR) 来降低血浆中的脂质水平。多项研究表明,他汀类药物的使用与癌症之间存在密切的相关性。第一项有希望的研究表明,他汀类药物能够改善癌症的预后,即延长生存时间(Gupta 等人,2019 年)。在这篇小型评论中,我们想阐明关于单独或与其他药物联合使用他汀类药物(如辛伐他汀、氟伐他汀和洛伐他汀)治疗癌症的新观点和创新目标。
促进微生物源中的鳞状含量来代替基于鲨鱼的矛棘矛脑(请参阅词汇表)是一种至关重要的中介和前体,用于产生所有类固醇激素以及植物和动物中的所有类固醇激素以及胆固醇[1]。specalene是包括固醇和霍托甘油在内的众多生物活性化合物的前体[2]。在细菌,真菌和原生物等微生物中,它在合成hopanoids,hopanoids,egostrolol,24-甲基乙醇和其他几种固醇中起着重要作用[3-6](在线供应材料中的图S1)。specalene在环境温度下以液体形式形式,并通过人皮肤分泌[7]。这是一种强大的天然抗氧化剂,可以通过防止脂质过氧化来保护细胞免受有害自由基和活性氧的影响[8]。此外,它已被抑制结肠,肺和皮肤的肿瘤发生,以及发挥化学保护活性[9,10]和免疫刺激性,吸引了医疗和制药行业的兴趣[11]。specalene是皮肤中最突出的成分,以及多饱和的脂肪酸,通常用于各种护肤产品中的润肤剂,抗氧化剂和水合特性[2]。最近对兔子的一项研究表明,饮食中饮食可以增强血浆总胆固醇(中等密度脂蛋白中的非酯化胆固醇和大型低密度脂蛋白的胆固醇),而无需增加三酰基甘油的浓度[12]。根据Allied Market Research的说法,2015年的全球Spereene市场为1.1亿美元,预计到2022年i将达到2.14亿美元。根据另一份报告,2020年的Scyalene全球市场规模为1.29亿美元,预计到2025年II的复合年增长率为7.3%,至1.84亿美元。