对3D形状的视觉和触觉感知受到扭曲的困扰,这受到非视觉因素(例如重力前庭信号)的影响。重力是否直接作用于视觉或触觉系统,还是在较高的,与模态无关的信息处理水平上仍然未知。为了检验这些假设,我们通过要求男性和女性人类受试者在直立和仰卧姿势以及微重力中执行“平方”任务来检查视觉和触觉3D形状感知。受试者调整了3D对象的一个边缘,以匹配三个规范参考平面中每个对象的长度,我们记录了匹配误差以获得感知到的3D形状的表征。结果显示了视觉和触觉方式的相反的,以身体为中心的错误模式,其幅度是负相关的,表明它们以不同的,特定于模态的代表出现,尽管如此,这些代表还是在某种级别上链接的。的失重以相同的方式显着调节视觉和触觉感知扭曲,这表明重力的效果是常见的,与模态无关的起源。总体而言,我们的发现显示了形式特异性的视觉和触觉感知扭曲之间的联系,并在与模态无依赖性的内部表示上演示了与重力相关的信号的作用,以及用于解释传统感觉输入的人体内部3D空间。
有关晚作业的政策:作业应在显示日期开始的上课开始。未经事先安排,将不接受较晚的工作。较晚的工作(安排)将每天停靠10%。共同努力:鼓励学生一起完成家庭作业,但每个学生都应交出他或她的个人解决方案。考试:考试是封闭的书。您将被允许使用一个备忘单,8.5英寸x 11英寸,只有手写音符仅在一侧。允许科学/图形计算器。不允许使用支持Internet的设备。不允许检查合作。我必须向学术不当行为委员会(COAM)报告任何学术不当行为。错过的考试:除非提前安排,否则任何错过的考试都将导致零等级。适当的情况包括疾病,直系亲属的死亡以及可比重力的情况。在这种情况下,并且仅在提前进行安排时,才能安排化妆考试。中期日期将提前宣布,因此请计划您的面试以及周围的工作。办公时间:星期二:11:30 am-12:30pm;星期三:11:30 am-12:30pm Cl 377到达我:您可以在办公时间与我联系,或者如果您不能在办公室工作时间,请通过电子邮件预约。期末考试:
在地质研究中,人们采用多种方法来发现自然资源。在大面积研究中,人们使用飞机、直升机和无人机 (Un nm Anned V ehicle)。重力、电磁和磁力方法都用于研究。在重力方法中,可以测量地球重力的极小变化 [1]。现代重力仪的灵敏度小于 1 mGal (1 Gal = 10 −2 m/s 2 )。重力仪可以测量接近 10 −6 g 水平的地球重力变化。 莫斯科的 Gravimetric Technologies Ltd. 公司是少数几家领先的超灵敏重力仪生产商之一 [2]。图 1 [3] 显示了安装在 Cessna 404 飞机上的 GT-1A 重力仪。应用电磁法也可以发现自然资源矿藏。第一个电磁系统出现并于 20 世纪 20 年代在斯堪的纳维亚半岛、美国和加拿大开发。电磁法用于测量土壤的电导率。电磁系统安装在飞机或直升机上。大线圈由直升机牵引或由飞机携带。线圈中的电流脉冲产生强磁场(初级场),该磁场穿透地球各层(图2)。时变场在土壤中产生涡流。线圈电流切断后,只剩下产生磁场的涡流(二次
本文介绍了一种基于生物榜样设计 4D 打印自成形材料系统的材料编程方法。植物启发了许多自适应系统,这些系统无需使用任何操作能量即可移动;然而,这些系统通常以简化的双层形式设计和制造。这项工作介绍了用于 4D 打印具有复合机制的仿生行为的计算设计方法。为了模拟运动植物结构的各向异性排列,使用基于挤压的 3D 打印在中观尺度上定制材料系统。该方法通过将缠绕植物(Dioscorea bulbifera)的力产生原理转移到自紧夹板的应用来展示。通过张紧其茎螺旋,D. bulbifera 对其支撑物施加挤压力,以提供对抗重力的稳定性。D. bulbifera 的功能策略被抽象并转化为定制的 4D 打印材料系统。然后评估这些仿生运动机制的挤压力。最后,在腕前臂夹板(一种常见的矫正装置)中对自紧功能进行了原型设计。所提出的方法可以将新颖且扩展的仿生设计策略转移到 4D 打印运动机制中,从而进一步为可穿戴辅助技术及其他领域的新型自适应创作打开设计空间。
摘要:本文研究了计算沿及时边界的量子场理论的纠缠熵(DS)重力的纠缠熵的挑战和决议。最初设计的传统岛公式,用于计算与反DE保姆(ADS)重力相连的非重粒系统的细粒熵,遇到了Sitter De Sitter Grveritation Spacetimation的困难,未能提供一个物理上质疑的极端极端岛屿。为了克服这些问题,我们通过将DS 2 Braneworld嵌入ADS 3散装时段来引入双重全息模型。这种方法通过全息相关函数促进了纠缠熵的计算,从而有效地规避了岛公式的约束。我们证明了用DS重力计算纠缠熵的正确配方涉及非超级岛,而其边界则在DS重力区域的边缘定义。我们的发现表明,在岛屿阶段,非重力浴的纠缠楔子包括整个DS引力空间。使用第二个变体公式,我们进一步表明,锚定在重力勃烷上的局部最小表面的存在与勃板的外部曲率本质上相关。
国际空间站(ISS)始终在船上约有3-5名机组人员,通常在ISS上持续约5-7个月。自2020年3月以来,ISS上发生了170个长期空间任务。因此,长期空间任务是太空探索的组成部分,并且随着月球和火星的任务即将到来,只会继续扩大持续时间。但是,长期空间任务给人机组人员带来了一些挑战。这些挑战中的大多数都与对微重力的生理适应有关,包括晕车,肌肉萎缩和心血管衰减。虽然不是很好,但在计划长期空间任务时要考虑的另一个主要因素是环境对宇航员的心理影响。居住在太空中的宇航员将无法进入自然景观和其他发现对心理压力和整体幸福感具有恢复性影响的环境。除了无法进入这些修复的自然环境之外,宇航员还将暴露于压力大,陌生的空间环境中。该迷你审查的目的是首先总结与与空间相关的压力源相关的文献。接下来,将提供有关生物质假说和恢复性环境的大量文献概述,因为这些文献可能是相对简单且具有成本效益的解决方案,以减轻长期空间任务中所面临的压力。最后,将介绍与太空胶囊中此类环境的设计以及未来的方向有关的考虑。
关于宇宙原始状态的复杂性质的有力陈述是由基于一般相对论的经典描述中混乱动力学的通用特征[1,2]做出的。在早期,高阳光宇宙中不断发展的空间各向异性可以通过有效的潜力来描述,该有效潜力通过将各向异性参数限制为有限区域的墙壁编码时空曲率的效率。关于应用于这些墙的台球动力学的数学结果,这些壁恰好是凸面并因此散落,然后保证混乱[3]。量子效应,例如波动或对量子重力的各种几何影响,可能会使这种行为更加违反直觉和更难解开。因此,不可能找到对宇宙初始状态的可靠知识。尤其是,一系列关于超级和弦理论的研究在某种程度上证实了这一期望,表明当包括与统一相关的额外维度和领域时,动态仍然混乱[4,5]。这种新成分通过包括新的独立自由度,扩展了各向异性参数的经典配置空间。尽管如此,它们带来了自己的曲率贡献,这些曲率贡献在有效的各向异性潜力中具有定性特征,从而保持了混乱的动力学。这些模型并不是完全量子,因为它们不考虑具有波动和相关性的状态,并遵守不确定性关系。独立地,量子宇宙学具有波动状态,也已应用于这个问题,但到目前为止,结果混合了[6-9],例如diffi-
太空生命科学实验的重要目的之一就是研究重力对生命的影响,因为生命始终受到地球引力的影响。在轨道运行的人造卫星和航天飞机上都进行过这样的实验。为了确定重力本身对轨道的影响,重要的是创造稳定的控制实验环境,其中其他参数(例如宇宙射线和电磁波)尽可能相同,并且只指定重力的影响。在地面实验中很难创造在轨实验条件,但在轨道实验室中创造重力更容易,可以确保更好的对比实验。为了在轨道实验室中创造重力环境,可以通过旋转部件产生离心力来创造重力。旋转直径越大越好,以减少科里奥利力和重力梯度的影响,但航天器可用空间有限。在国际空间站(ISS)的日本实验舱“希望号”中,有一个用于离心生命科学实验的轨道实验设施。该设施通过优化可用的实验室空间,拥有国际空间站中最大的旋转直径之一。该设施可以通过离心力产生小于 1G 的重力,这在地面设施中很难产生,并能长时间保持稳定。该设施还可以模拟相当于月球表面和火星的重力。三菱重工有限公司 (MHI) 开发了带有大型离心机(旋转半径:38 厘米)的实验设施,该设施自 2020 年以来一直在运行。本报告概述了该设施的开发和首次任务。| 1. 简介
近年来,有人提出量子信息理论和重力理论具有深厚的联系。量规/重力二元性在一个较高的维度中显示出强耦合量子场理论(QFTS)和弱耦合重力理论之间的等效性[1-3],为我们提供了一种强大的工具。因此,量子信息理论考虑在量规/重力双重性和量子重力的研究中提供了各种有用的观点。一个例子是ryu-takayanagi(RT)公式[4-6],它连接了双时空中的Codimension-2最小表面的面积和边界QFT的纠缠熵。RT公式已被推广到Rényi熵[7,8],高阶重力理论[9-11]和具有量子校正的病例[12,13]。名为“复杂性”的量子信息中的其他数量,该信息根据将一个状态转换为另一种状态的量子电路的大小来测量两个状态的差异,在重力和黑洞物理学方面也得到了广泛的研究[14-19]。从一般的角度来看,复杂性是量子状态之间的一种“距离” [20]。除了复杂性外,状态之间距离之间还有其他几种不同的度量,这些度量被广泛用于量子信息[21,22]。例如,给定两个密度矩阵ρ和σ在同一希尔伯特空间中,两个距离家族在量子信息理论中广泛使用。第一个是基于实现的
协作式车辆安全应用最好具有两米的水平精度和六米的垂直精度,并且可用性均为 95%。解决方案必须包含低成本的传感器选项,具体来说,就是低成本的惯性测量单元,其通常特征是陀螺仪漂移为每小时 100 度,加速度计偏置力为其质量乘以重力的两倍(两毫伽)。我们实施的协作式车辆安全系统在车辆和路边基础设施之间使用低延迟 5.9 GHz 通信链路。这使每辆车能够持续评估发生碰撞的可能性。如果碰撞概率高,系统可能会为驾驶员生成车内警告,甚至自动启动操作以帮助防止碰撞。配备此系统的车辆知道自己的位置和路径,同时还可以无线监控周围车辆的位置和路径。这些应用依赖于两种主要技术:(1) 使用专用短程通信 (DSRC) 进行信息交换,(2) 使用 GNSS 进行定位,尽管还涉及各种其他技术。尽管 GNSS 在信号畅通无阻的开放区域满足所需的精度水平,但它无法在密集的城市环境中支持所需的性能。为了实现设定的性能目标,必须使用其他传感器来增强 GNSS。在本文中,我们描述了一种多传感器架构,该架构旨在实现在困难的 GNSS 环境(例如城市峡谷)中实现精确定位能力,以实现合作车辆安全应用。我们的总体目标是实现米级
