“聚合物化学”可以创造文明的某些美好,但也可以解决非封闭全球元素循环的严重弊端。在一个虚构的循环和可持续发展的世界中,当前的“化石”商业计划将变得困难,而生物质作为单体和聚合物的来源是一个明显的替代方案。然而,生物质通常带有水和化学功能,这使得我们目前的催化工具箱相当差。水热重整(HTR)和水热碳化(HTC)是将碳水化合物(包括粗林业副产品,但一般是废弃生物质)转化为各种产品的化学过程。所有这些过程也都是自然发生的,产品大多是众所周知的,但工程可以在“贵重钢”中大大加速。我将介绍这些现在经典的过程,但重点介绍“水热腐殖化”,其中的聚合物产品对农业和土壤修复非常有用。与我们最初的预期相反,这些聚合物不仅通过其物理化学作用发挥作用,还打开了一个以前无法进入的生物“宇宙”。20亿公顷的可耕地实际上受到中度至重度土壤退化的影响,实际上需要20亿吨腐殖质,而这些腐殖质反过来可能通过土壤微生物的生物物质系统工程封存高达3500亿吨的二氧化碳。这不亚于人类过去十年的排放量。
Canaccord Genuity 是一家占主导地位的全方位服务中型市场投资银行,为全球技术、媒体、营销和信息服务 (TMMIS) 领域的成长型公司提供服务,包括为商业行业提供解决方案和服务的企业。我们的全球团队已与提供技术和技术支持服务以促进数字和店内商业发展的公司完成了众多项目,包括少数股权和成长型融资、私募股权和家族办公室驱动的多数股权重整、战略销售和资产剥离,以及股权资本市场交易,这些交易面向支持商业软件平台并推动数字市场和实体零售环境中营销人员和品牌购买的企业。与全球商业行业保持一致并利用公司的国际网络,Canaccord Genuity 的大量商业相关银行业务都是跨境的,交易完成方包括北美、欧洲和亚洲的各方。该公司的成功记录得到了金融赞助商社区的认可——该公司大约一半的项目涉及代表投资者支持的公司;同时,我们卓越的行业覆盖范围也继续使 Canaccord Genuity 成为创始人和管理层所有、以商业为中心的企业的首选顾问。
重整 (SMR) 为哈伯-博施法提供 H 2 气作为原料。利用来自可再生技术的电力进行电化学 H 2 生产及其后续利用可以成为“绿色 NH 3 ”的来源。尽管用于绿色 H 2 生产 的聚合物电解质膜 (PEM) 电解器的效率和稳定性已经有了显着发展,但每吨氨至少需要 30.3-35.3 GJ,运行效率甚至高达 60-70%。此外,使用空气分离装置和哈伯-博施环路压缩机供应 N 2 以进行使用绿色 H 2 的哈伯-博施法,每吨氨还需要 2.7 GJ 的 N 2 生产。这些成本目前仍然高于传统的哈伯-博施法(低于每吨氨 30 GJ)。 54,55 在这方面,电化学氮还原 (NRR) 近来引起了全球研究兴趣,以生产 NH 3 作为哈伯-博施法的替代品。迄今为止,该法产量低(低于 3·10·10 mol s 1 cm 2 )且法拉第效率 (FE,低于 10%),受到 NRN 键强度 (941 kJ mol 1 )、N 2 在水溶液中的溶解度差(环境条件下为 0.66 mmol L 1 )以及竞争性析氢反应 (HER) 的挑战。7,8
随着世界人口的增长和经济工业化的发展,世界各地的能源消耗正在迅速增加。与此同时,保护化石燃料储量的压力和气候变化正在加剧社会能源链,并为扩大世界道路运输机动性部门寻找清洁燃料来源。氢气是生产可再生能源的最重要因素之一,氢气是完美的燃料,它效率最高,在燃料电池中使用时不会产生排放。它无毒,来自可再生资源,也不是温室气体。许多研究表明,氢气可能仅依赖于石油和其他传统燃料。氢气用于燃料电池发电,也可用作内燃机燃料。与内燃机相比,燃料电池具有显著的效率优势,使其成为将氢转化为电能的主要设备。氢是一种无味无色的气体,氢原子仅由一个质子和一个电子组成,它也是宇宙中最重要的元素,但氢在自然界中并不存在,它总是与其他元素结合,例如水是氢和氧的结合体(H2O)。氢不是能源,而是只能从其他能源中产生,因此它被称为一种能源,是一种储存和运输能源的方式。氢是最简单的无味无珊瑚的情况,氢原子仅由一个质子和一个电子组成。它也是宇宙中最重要的。氢存在于许多有机化合物中,如碳氢化合物,它们构成了我们的许多燃料,如汽油、天然气、生物质、甲醇和丙烷。氢可以通过加热从碳氢化合物中分离出来,这一过程称为重整。大多数氢是通过这种方式从天然气中制成的,但天然气是化石燃料,因此在重整过程中释放的二氧化碳加剧了温室效应。氢气的能量非常高,但体积却非常小,因此需要新技术来储存和运输氢气。燃料电池技术仍处于早期开发阶段,需要提高效率和耐用性,也可用于将水分离成氧气和氢气。这个过程被称为电解。在未来的氢经济中,氢气将从各种能源中生产出来并储存起来以备日常使用,或者可以将其转移到需要的地方,然后干净地转化为热能和电能。能源用于从水中生产氢气,一次和二次能源形式都可再生且与环境相容,从而形成理想的清洁和永久能源系统,这被称为太阳能氢能系统。氢可用于当今使用化石燃料的任何领域,除了特别需要碳的情况。氢可用作英特尔内燃机、涡轮机和喷气发动机的燃料,其效率甚至比化石燃料(例如煤、石油和天然气)更高。汽车、公共汽车、火车、座椅、潜艇、飞机都离不开氢。燃料电池还可将氢直接转化为电能,在交通运输和固定发电领域有多种应用。金属水合物技术在制冷、空调、氢气储存和净化领域有多种应用。氢与氧燃烧可产生氢气,在工业过程和专业领域有多种应用。此外,氢还是计算机、冶金、化学、制药、化肥和食品等众多行业的重要工业气体和原料。
立即发布 2022 年 4 月 13 日,星期三 Greenview 董事总经理与 Cerilon GTL Inc. 签署谅解备忘录,以扩大 Greenview 工业门户开发项目 艾伯塔省 Valleyview Greenview Council 董事总经理在 4 月 12 日的会议上批准了与 Cerilon Incorporated 的子公司 Cerilon GTL 签署谅解备忘录,以购买 Greenview 工业门户 (GIG) 约 200 英亩(81 公顷)的土地。Cerilon 打算在该地点建造一座价值 28 亿美元的工厂,生产超低硫柴油和航空燃料。Cerilon 提议建造一座日产 24,000 桶的气转液 (GTL) 设施,用于生产清洁、环保、超低硫柴油和专业产品。 Cerilon GTL 工厂将对天然气进行重整,生成氢气和合成气,然后将其转化为费托合成液和蜡,创造过剩的电力供应机会,从而生产出超低硫产品。Cerilon GTL 将把其创新工艺和系统应用于下一代智能制造技术。GTL 工厂还将捕获二氧化碳并实施碳捕获和封存工艺 (CCS),使 Cerilon GTL 工厂成为世界上碳足迹最低的 GTL 工厂。
因为其质量能量密度(120 MJ kg − 1 )高于汽油(44 MJ kg − 1 ),能量转换效率高,环境兼容性好,并且二氧化碳零排放,副产品只有水。8 – 12此外,氢气已应用于氨的合成(哈伯法)、甲醇合成、原油加氢裂化、盐酸生产以及油脂的氢化过程。13,14由于地球上不存在天然氢气,因此目前正在通过高温高压蒸汽重整碳氢化合物来生产氢气,这不可避免地会导致有限的化石燃料的消耗和二氧化碳的排放。15此外,该方法获得的H 2 伴随着C,N和S的氧化物,这些氧化物会毒害催化剂的表面,缩短其循环寿命。16,17其他方法包括光电化学水分解,其利用光子产生H 2 。 18,19 虽然它们更环保,可以产生纯 H 2 ,但由于它们较低的太阳能到氢 (STH) 转化效率,导致单位时间内的产量不足,因此无法替代用于批量和即时生成。 20,21 金属氢化物和活性金属的水解可用于快速生产大量 H 2 。 22,23 尽管如此,它们的前体通常是有毒金属,并且通过污染环境的精细化学工业合成,不能选择作为一种更环保的生产方法。 24 – 27 因此,水电解是产生即时和大规模 H 2 的唯一环境友好型方法,通过开发具有出色水分解效率的经济有效的电催化剂来改善水电解器性能的研究是研究人员的热门话题。 28 – 30
氢是宇宙中最丰富的化学元素,每单位重量的能量含量最高。与其他替代能源相比,氢的污染也更小,因为燃料电池使用氢发电,只释放水。然而,氢在自然界中并不纯,这意味着它必须通过化学过程来提取。这意味着提取过程中将消耗额外的能量,并且这些操作将释放污染物。通常,氢是由天然气通过蒸汽重整工艺生产的。在高温(700 – 1100°C)和金属催化剂(镍)存在下,蒸汽与甲烷发生反应,生成一氧化碳和氢气。通过与产生的一氧化碳进行低温气体变换反应可以回收额外的氢气。水电解也可以产生氢气。关于公路运输燃料,氢气被视为一种潜在的选择。在私家车主中普及燃料的主要障碍是生产、运输和加油基础设施。因此,大多数示范项目都与公共巴士领域有关,例如欧洲清洁城市交通 (CUTE)、全球氢能巴士平台 (HyFLEET:CUTE)、可持续交通能源计划 (STEP) 和生态城市交通系统 (ECTOS)。然而,一些轻型车辆的原始设备制造商 (OEM) 已经参与了替代动力系统的开发。欧盟已经实施了一条增加可再生能源和能源效率(包括氢能)研发计划的途径,并发布了一系列政策措施和激励措施。在本报告中,SEAFUEL 合作伙伴对有关氢能的国家政策以及欧盟政策进行了广泛的搜索。
氢是地球上数量最多、最简单的元素。它可以储存和释放可用能量。然而,氢并不单独存在于自然界中,必须由包含它的不同元素制成。例如,它可以与碳(如石油、天然气)和水中的氧(H 2 O)结合[1]。氢的每千克比能量是所有燃料中最高的(即 120-140 MJ/kg),但其能量密度不太适合储存(即 2.8-10 MJ/L),具体取决于物理储存方式(如压缩(350-700 bar)、液体)[2]。一方面,全球利用重整工艺从天然气、煤炭和石油中生产的氢气约占 96%。另一方面,利用水电解工艺将去离子水分解为氢气和氧气约占全球氢气产量的 4% [3]。尽管氢气本质上是一种清洁的能源,但它需要能量来生产;所采用的能源类型有所不同。由化石燃料生产的氢气由于间接污染而被称为灰氢。为了供应水电解过程,可再生能源 (RES)(例如风力涡轮机、光伏)是最适合的,因为它们可以限制对环境的影响。通过这种方式,可以获得所谓的绿色氢气。将这种氢气混合到现有的天然气管道网络中已被提议作为增加可再生能源系统产量的一种手段。通过管道输送氢气和甲烷混合物也有悠久的历史;最近,风电装机容量的快速增长以及对燃料电池电动汽车近期市场准备的关注,增加了利益相关者的兴趣 [ 4 , 5 ]。
Sarah Caudill,博士,路易斯安那州立大学,助理教授。专业领域:黑洞和中子星的引力波搜索、科学计算、机器学习。 Robert Fisher,(研究生项目主任),博士,加州大学伯克利分校,教授。专业领域:湍流基础物理学、科学计算、恒星形成和超新星。 Jong-Ping Hsu 博士 1969 罗彻斯特大学,校长教授。专业领域:时空对称性、量子杨-米尔斯引力、具有非积分相位因子的广义规范变换和夸克禁闭的可重整化模型 David Kagan,博士,剑桥大学,物理学专职讲师。专业领域:弦理论、量子引力、量子理论。 Christian McHugh,博士,北卡罗来纳大学教堂山分校,物理学专职讲师。专业领域:医学物理学、磁共振成像、化学交换核磁共振波谱、超极化氙。 Grant O'Rielly,博士,墨尔本大学,副教授。专业领域:中等能量光核物理、少体系统、介子光生成、基本核对称性。 Renuka Rajapakse,博士,康涅狄格大学,物理学专职讲师。专业领域:量子光学、计算物理、量子计算和原子物理。 Jay (Jianyi) Wang,(主席),博士,田纳西大学诺克斯维尔分校,教授。专业领域:电子、原子和光学过程的理论与模拟、离子-固体和离子-表面相互作用、计算物理。
bcm 十亿立方米 CBAM 碳边境调整机制 CCFD 碳差价合约 CCGT 联合循环燃气轮机 CCS 碳捕获与封存 CDA 补充授权法案 CNG 压缩天然气 CO 2 二氧化碳 CSRD 企业可持续发展报告指令 DA 授权法案 DAC 直接空气捕获 DNSH 不造成重大伤害 EBA 欧洲银行管理局 ECB 欧洲中央银行 ESAs 欧洲监管当局 ESG 环境、社会和治理 ESMA 欧洲证券和市场管理局 ETF 交易所交易基金 ETS 排放交易计划 ETR 环境税改革 GFC 全球金融危机 GHG 温室气体 GPP 绿色公共采购 GVA 总增加值 HGV 重型货车 IEA 国际能源署 IIGCC 气候变化机构投资者小组 IPCC 政府间气候变化专门委员会 ISSB 国际可持续发展标准委员会 LCOE 平准化能源成本 LDAR 泄漏检测与减排 LNG 液化天然气 LRMC 长期边际成本 MS 欧盟成员国 PCI 共同利益项目 PPAs 购电协议 PSF 可持续金融平台QE 量化宽松 RE 可再生能源 RFNBOs 非生物来源的可再生燃料 SFDR 可持续金融披露条例 SMR 蒸汽甲烷重整 TEN-E 第 347/2013 号《跨欧洲能源网络条例》 UNFCCC 联合国气候变化框架公约 VRE 可变可再生能源