在本文中,我们研究了新哥本哈根(或“认识论实用主义”)对量子力学的主要解释之间的相似之处和差异,这些解释在这里被定义为拒绝量子态的本体论性质并同时避免隐藏变量,同时保持量子形式不变。我们认为,存在一个具有共同核心的单一通用解释框架,所有这些解释都致力于这个框架,因此它们可以被视为它的不同实例,其中一些差异主要是重点和程度的问题。然而,我们也发现了更实质性的剩余差异,并对它们进行了初步分析。我们还认为,这些剩余的差异无法在量子力学本身的形式主义中得到解决,并确定了可用于打破这种解释不确定性的更普遍的哲学考虑。
第二次量子革命不仅促进了量子科学和技术的研究,也促进了如何最好地教育可能进入这一新兴领域的学生的研究。关于量子科学教育的大部分讨论都集中在学生的概念学习或潜在雇主所期望的技能上;缺乏对实验课程和实验如何促进本科量子教育的研究。为了开始了解量子实验可能发挥的作用,我们对在本科实验课程中使用单光子和纠缠光子进行实验的教师进行了调查,发现最重要的学习目标之一是“在现实生活中看到量子力学”。为了更好地理解这一目标,我们采访了 15 位接受调查的教师,询问他们了解量子力学对他们意味着什么,以及他们为什么认为这是学生教育的重要组成部分。我们从对这些访谈的定性编码分析中提出了新主题,这些主题开始阐明教师如何看待了解量子力学,以及教师希望了解量子力学(以及更广泛地进行量子实验)将帮助学生实现哪些学习目标。
这本书是理论最低系列的第二卷。第一卷,理论的最低限度:开始做物理学,涵盖的古典力学,这是任何物理教育的核心。我们将不时将其简单地称为卷。第二本书解释了量子力学及其与古典力学的联系。本系列中的书籍与伦纳德·苏斯金德(Leonard Susskind)的视频平行,该视频可通过斯坦福大学(Stanford University)在网络上获得(www.theoricentimenminmumim.com有关清单)。同时与视频相同的一般主题时,这些书包含其他详细信息,以及视频中没有出现的主题。
摘要:从表面上看,行为科学和物理学似乎是两个不同的研究领域。然而,对他们解决的问题进行了更仔细的研究表明,它们彼此唯一相关。以量子思维,认知和决策理论为例,这种独特的关系是本章的主题。调查当前的学术期刊论文和学术专着,我们提出了量子力学在人类感知,行为和决策现代研究中的作用的另一种愿景。为此,我们主要旨在回答“如何”问题,故意避免复杂的数学概念,但要开发一种技术简单的计算代码,读者可以修改以设计自己的量子启发的模型。我们还介绍了计算代码的应用并概述几个合理的方案的几个实践示例,其中量子模型基于提议的DO-Yourandself Model套件可以帮助了解个人和社会群体的行为之间的差异。
在这本开创性的本科教科书中,探索量子力学的基础,并探索这些原理如何推动新一代量子工程的发展。它使用尖端的电子、光电和光子设备解释物理和数学原理,将基础理论与实际应用联系起来;侧重于当前技术,避免历史方法,让学生快速掌握应对当代工程挑战的方法;介绍量子信息的基础,以及丰富的现实世界量子示例,包括量子阱红外光电探测器、太阳能电池、量子隐形传态、量子计算、带隙工程、量子级联激光器、低维材料和范德华异质结构;并包括教学功能,例如目标和章末家庭作业问题,以巩固学生的理解,并为教师提供解决方案。旨在激发未来量子设备和系统的发展,这是本科电子工程师和材料科学家学习量子力学的完美入门书。
1. 量子现象背景下的古典物理学回顾 行星运动和原子、辐射和量化、随机过程和干涉。 2. 量子力学的数学语言 量子态、算子、矩阵、不确定性和时间演化。 3. 基本量子系统 盒中粒子、谐振子、非谐振子、隧穿。快速了解静态微扰理论。 4. 耦合量子系统 纠缠、密度矩阵、测量和退相干。快速了解费米黄金法则。 5. 探索量子腔量子电动力学、量子控制、量子非破坏性测量 6. 量子计算简介(时间允许)
自量子物理学诞生以来,“量子”和“经典”世界之间的界限问题就一直备受关注,但今天,这一领域仍有许多悬而未决的问题,而社会对此还没有达成共识。这里最著名的问题可能是测量问题:决定宏观(“经典”)仪器在测量微观(“量子”)系统特性时的行为的规则如何遵循量子力学方程(以及它们是否遵循)。首先,有必要说明的是,量子理论中采用的术语与一般物理术语有本质区别。通常在物理学中(以及在日常生活中),测量被理解为使用测量设备对某些物理量和参考值进行比较。在这种情况下,测量误差通常是由设备的不完善而不是由所研究系统的属性决定的,可以通过改进仪器和测量程序来减少。在量子
本书包含 300 多个量子力学问题及其解决方案,涵盖了研究生一年级物理课程中常见的主题。本书特别关注每个问题的表述,并提供详细而广泛的解决方案以帮助理解。这些问题涵盖了从基本练习到更具挑战性的应用和标准材料的扩展的一系列难度。学生需要批判性地思考,并结合以前或同时学习的物理和数学技巧来解决更具挑战性的问题。每章都以一个简短的理论部分开始,阐述正在研究的特定主题,为后续问题设定背景并激发其灵感。本书非常适合自学,或作为高年级本科生和研究生及其导师现有量子力学教科书的有益补充。
克里斯·蒂普森:首先我要说的是,任何物理学都是奇怪的。量子力学就是这样,更重要的是,它之所以如此,是因为它不仅混淆了我们通常认为的世界真相(考虑到我们对周围中等大小物体的常识理解),而且事物属性的组合方式不符合经典逻辑。因此,我们有一个著名的量子叠加概念。经典物理学中也有叠加的概念。例如,当一个人拨动吉他弦时,就会产生不同频率和不同谐波的叠加,从数学上讲,就是将这些不同的状态相加,以创建一个新的允许状态。但在量子力学中,情况有所不同,因为我们在非经典属性结构的背景下进行了叠加。