众所周知,纠缠在量子场论中广泛存在,具体含义为:每个 Reeh-Schlieder 态都包含任意两个空间分离区域之间的纠缠。这尤其适用于闵可夫斯基时空中无相互作用的标量理论的真空。场论中关于纠缠的讨论主要集中在包含无限多个自由度的子系统上 — — 通常是在紧凑空间区域内支持的场模式。在本文中,我们研究 D + 1 维闵可夫斯基时空中的自由标量理论中由有限个场自由度组成的子系统中的纠缠。关注场的有限个模式是受真实实验有限能力的驱使。我们发现有限维子系统之间的纠缠并不常见,需要仔细选择模式的支持才能出现纠缠。我们还发现纠缠在高维中越来越稀疏。我们得出结论,闵可夫斯基时空中的纠缠并不像通常认为的那么普遍。
合作目标 量子计算机有望超越传统计算机的容量,并彻底改变计算的多个方面,尤其是量子系统的模拟。我们开发了使用量子计算机研究强相互作用粒子在碰撞中的演化、引力系统的量子行为以及时空出现的新方法,这些方面超出了传统计算的范围。我们的目标是设计与这些问题相关的通用量子计算机的构建模块,并开发与系统规模合理扩展的算法。
最近有人提出,嘈杂的中型量子计算机可用于优化经典计算机上格子量子场论 (LQFT) 计算的插值算子构造。这里,开发并实施了该方法的两种具体实现。第一种方法是最大化插值算子作用于真空状态与目标本征态所创建状态的重叠或保真度。第二种方法是最小化插值状态的能量期望值。这些方法在 (1 + 1) 维中针对单一味大质量 Schwinger 模型的概念验证计算中实现,以获得理论中矢量介子状态的量子优化插值算子构造。虽然在没有量子门误差噪声的情况下,保真度最大化是更好的选择,但在概念验证计算中,能量最小化对这些影响更具鲁棒性。这项工作具体展示了中期量子计算机如何用于加速经典 LQFT 计算。
通常,人们会这样写 QFT = QM + SR。物理学家们说这番话时,已经积累了近一个世纪的经验,他们为此感到困惑和痛苦,因为他们建立的描述物理现象的理论存在局限性。在学习这门学科时,人们看到的是一个往往毫无动机的精致产品,一个可以工作的大黑匣子。因此,当人们在搅动 QFT 这个重型机器以产生一些合理的结果时,很难理解我们为什么需要它。例如,我们为什么需要场?但 QFT 并不是为了抽象而抽象,如果有一个更简单的理论来描述粒子物理学,我们早就找到了它。鉴于此,今天我想首先明确说明为什么量子力学本身无法描述非常小尺度的物理学。
量子力学波函数的自发坍缩模型 [1–4] 具有吸引力,因为它们不明确涉及人类知识;与量子力学的多世界方法 [5–7] 一样,这些模型“具体化”了量子波函数,即将其视为物理实体,但与多世界方法不同,它们不会产生将宇宙无限划分为更多不相互作用的子宇宙的哲学难题。 Diosi [8–10] 和 Penrose [11,12] 认为,没有坍缩,我们对时空曲率本身的理解就会崩溃。然而,自发坍缩是一个非幺正过程,这意味着它不能用任何仅引用现有幺正量子理论的模型来描述。那么问题仍然是,是否可以找到与实验相符的标准量子理论非幺正变换的自洽模型。关于自发坍缩的各种提议(例如,除上述提议外,还有参考文献 [13–18])给出了自发坍缩如何运作的框架,但都涉及了内在随机性,这种随机性可能被视为某些我们未知的底层物理现实的结果,也可能是某些已知物理实体(如重力)的结果,但这些实体在书本上没有得到处理,没有任何明确的机制。相比之下,在之前的一篇文章 [19] 中,我提出了一个模型,将量子力学的随机性完全视为已知物理实体不均匀性导致的涨落的结果。这将自发坍缩带入了物理定律的领域,而不是推测,并允许对该理论进行物理测试。特别是,参考文献 [19] 的模型提出了一种物理机制,通过该机制,费米子的局部本征态会自发坍缩到其两个允许状态之一。该模型具有以下特点:
这是一系列论文中的第一篇,旨在根据量子场论中的不等时间关联函数来发展相对论量子信息论。在本文中,我们重点介绍了两种形式,它们可以一起提供适合进一步发展的有用理论平台:1)使用量子时间概率 (QTP) 方法进行量子场测量;2)用于因果时间演化的封闭时间路径 (CTP) 形式。QTP 将探测器纳入量子描述,同时强调测量记录是宏观的,可以用经典时空坐标来表示。我们首先给出 n 个测量事件概率的 QTP 公式的新的、基本的推导。然后,我们通过编写关联相关生成函数的显式公式来证明 QTP 与封闭时间路径形式的关系。我们利用 CTP 形式的路径积分表示,以便用路径积分来表示测量概率。之后,我们提供 QTP 形式的一些简单应用。特别是,我们展示了 Unruh-DeWitt 探测器模型和 Glauber 的光电探测理论如何作为极限情况出现。最后,由于量子关联是相对论量子信息和测量中的关键概念,我们强调了 CTP 双粒子不可约有效作用所起的作用,它使我们能够利用非平衡量子场论的资源来实现我们所述的目的。
量子场论 (QFT) 起源于 20 世纪 40 和 50 年代为基本粒子定义相对论量子力学理论的尝试。如今,这个术语用于描述从基本粒子到凝聚态物理等各种物理现象的计算框架,该框架基于路径积分,即广义函数空间上的测度。此类测度的数学构造和分析也称为建设性 QFT。本工作联合会将首先介绍一些背景材料,然后探讨近年来基于随机偏微分方程 (SPDE) 视角的一些进展,对于这些方程,QFT 测度是平稳测度。物理学家 Parisi 和 Wu [PW81] 首次观察到 QFT 和 SPDE 之间的联系,这种联系被称为随机量化。从随机量化程序中导出的这些 SPDE 的解理论和解的性质的研究促进了奇异 SPDE 解理论的实质性进展,尤其是过去十年中规则结构理论 [Hai14b] 和准受控分布理论 [GIP15] 的发明。此外,随机量化使我们能够引入更多工具(包括 PDE 和随机分析)来研究 QFT。本 Arbeitsgemeinschaft 的重点将以 QFT 模型(例如 Φ 4 和 Yang-Mills 模型)为例,讨论随机量化和 SPDE 方法及其在这些模型中的应用。其他模型(例如费米子模型、sine-Gordon 和指数相互作用)也将在一定程度上得到讨论。我们将介绍正则结构和准受控分布的核心思想、结果和应用,以及与这些模型相对应的 SPDE 的局部解和全局解的构造,并使用 PDE 方法研究这些 QFT 的一些定性行为,以及与相应的格点或统计物理模型的联系。我们还将讨论 QFT 的一些其他主题,例如威尔逊重正化群、对数索伯列夫不等式及其含义,以及这些主题与 SPDE 之间的各种联系。