本期观点主要关注物理和化学领域中量子算法和蒙特卡罗方法之间的几个重叠部分。我们将分析将已建立的量子蒙特卡罗解决方案集成到量子算法中的挑战和可能性。这些包括精细的能量估计器、参数优化、实时和虚时动力学以及变分电路。相反,我们将回顾利用量子硬件加速统计经典模型中采样的新想法,并将其应用于物理、化学、优化和机器学习。本评论旨在让两个社区都能阅读,并旨在促进量子计算和蒙特卡罗方法交叉领域的进一步算法发展。本期观点中讨论的大多数作品都是在过去两年内出现的,表明人们对这一有前途的研究领域的兴趣正在迅速增长。
1843 年,阿达·洛夫莱斯 (Ada Lovelace) 发表了历史上第一个计算机程序。该程序旨在在查尔斯·巴贝奇 (Charles Babbage) 的分析机上执行。然而,这台机器当时还没有制造出来。阿达·洛夫莱斯在测试她的程序之前就去世了。当阿达·洛夫莱斯和查尔斯·巴贝奇设计这种计算机时,量子计算现在比分析计算略先进一些。量子计算的概念是在几十年前设计的,基于这些原理的量子算法也是在此期间开发的。然而,我们还没有通用的量子计算机来使用这些算法。今天的量子计算机是计算时间和内存有限的设备,但它们正在逐年增长。继谷歌宣布量子霸权* 1 [Arute et al. 2019] 之后,本报告旨在概述量子计算的进展,并简要介绍理解如何使用这种机器进行计算所需的概念。本报告还介绍了最新技术,以帮助理解什么是量子计算。首先,我们介绍量子计算的历史,然后介绍量子物理的核心概念和量子计算的基本概念。最后,我们将概述量子算法和技术。
认识论又称为科学哲学。它是哲学的一部分,我们研究知识、知识的基础、性质、范围和局限性。方法论是认识论的一个分支,我们研究特定于科学或学科的研究和分析方法。我们经常看到这个术语与方法(用于建立或证明真理,根据确定的原则和按特定顺序应用的步骤引导我们的思想)混淆使用。有时使用“logy”后缀来为我们不应该使用的术语提供科学解释……卡尔波普尔是 20 世纪的主要科学哲学家,他的工作主要集中在科学发现的逻辑上 [1]。他将可重复性提升为研究科学性的主要标准。十年来,我们在许多领域都观察到了可重复性危机,计算机科学就是其中之一。ACM 术语最近在 2020 年进行了更改,以反映计算机科学家的这种认识以及朝着产生可靠结果的正确方向的发展。经典计算机是确定性机器,即使我们运行随机模拟也是如此。当正确使用伪随机数时,我们可以用适当的方法精确地获得按位相同的结果,从而调试正在构建的科学软件,这是至关重要的 [2]。量子机器本质上是随机的,每次运行都可能产生不同的结果,但可重复性(而非可重复性)仍然是检查量子机器质量的主要标准:我们是否获得相同的统计数据和相同的科学结论?在简要回顾量子计算的起源之后,我们将在真实量子处理器上模拟和测试 Grover 算法时回顾正在进行的工作。
4 在量子计算机上实现酉变换和普遍性 14 4.1 量子计算机上的普遍性是什么意思?....................................................................................................14 4.2 单量子比特酉变换....................................................................................................................................15 4.3 受控酉变换....................................................................................................................................................17 4.4 如何使用一小组门近似单个量子比特的任何酉变换....................................................................................................................17 . ... . ...
资本市场行业中的许多公司都有良好的机器学习模型,这些模型随着时间的流逝而发展,并且已用于一系列不同的用例。这些包括算法交易,预测债券价格,利率的未来变动以及衡量和评估市场情绪。这些用例虽然不是新事物,但可能会随着公司寻求潜在利用AI技术的进步以优化其流程并通过其工作流创造进一步价值的情况而扩展。我们已经在资本市场工作组的AI中看到了此示例,例如使用AI和ICMA的债券数据分类法(BDT)从债券文件中提取相关信息的原型,防止解决方案失败并增强流动性管理。这样的AI用例示例可以理解为“变革性”,因为它们将现有的AI技术应用于以前未修改的工作流程,从而在很大程度上优化和/或更改了操作过程。
我们介绍了 Perceval,这是一个用于模拟和与离散变量光子量子计算机交互的开源软件平台,并描述了它的主要特性和组件。它的 Python 前端允许光子电路由基本的光子构建块组成,例如光子源、分束器、移相器和探测器。有各种计算后端可用,并针对不同的用例进行了优化。它们使用最先进的模拟技术,涵盖弱模拟或采样和强模拟。我们通过重现各种光子实验并模拟一系列量子算法的光子实现(从 Grover 和 Shor 的算法到量子机器学习的例子),给出了 Perceval 的实际应用示例。 Perceval 旨在成为一个有用的工具包,适用于希望轻松建模、设计、模拟或优化离散变量光子实验的实验者,希望为离散变量光子量子计算平台设计算法和应用程序的理论家,以及希望在现有的最先进的光子量子计算机上评估算法的应用程序设计者。
预计量子计算机将很快解决非对称密钥算法,如 RSA、Diffie-Hellman (DH) 和椭圆曲线密码 (ECC)。对称加密比非对称加密数学性更低,因为它使用相同的密钥来加密和解密数据。因此,对称加密不会受到量子计算的威胁。像 RSA 这样的非对称加密依赖于寻找大数的质因数。RSA 如今是可靠的,因为即使使用最好的超级计算机,通过蛮力寻找质因数的成本也高得令人望而却步。然而,量子计算对 RSA 加密构成了风险,因为它有可能通过叠加找到质因数。一旦发生这种情况,全球的 RSA 系统将面临严重风险,互联网通信将陷入停顿。
利用最近开发的 (J. Chem. Theory Comput. 2020, 16, 1215 – 1231) Ad − MD | gVH 方法模拟了乙腈溶液中苝二酰亚胺 (PDI) 染料的光吸收光谱。这种混合量子-经典 (MQC) 方法基于软(经典)/刚性(量子)核自由度的绝热 (Ad) 分离,并将光谱表示为通过广义垂直 Hessian (g VH) 振动电子方法获得的振动电子光谱(对于刚性坐标)的构象平均值(在软坐标上)。该平均值是使用特定参数化的量子力学衍生力场 (QMD-FF) 执行的,针对从经典分子动力学 (MD) 运行中提取的快照进行的。本文对旨在重现灵活分子光谱形状的不同方法的可靠性进行了全面的评估。首先,通过将特定 QMD-FF 和通用可转移 FF 获得的结果与参考气相从头算 MD (AIMD) 的结果进行比较,评估采样构型空间的差异及其对吸收光谱预测的影响,包括纯经典方案(集合平均)和 Ad − MD | gVH 框架。接下来,还获得了溶液中 PDI 动力学的经典集合平均和 MQC 预测,并将其与基于对单个优化苝二酰亚胺结构进行的振动电子计算的“静态”方法的结果进行了比较。在经典的集合平均方法中,用两个 FF 获得的显著不同的采样导致预测光谱的位置和强度都发生了相当大的变化,其中沿 QMD-FF 轨迹计算的光谱与 AIMD 对应光谱非常接近。相反,在 Ad − MD | gVH 理论水平上,不同的采样提供非常相似的振动电子光谱,这表明用通用 FF 获得的吸收光谱中的误差主要与刚性模式有关,因为它可以通过 g VH 执行的二次外推来有效地校正,以沿此类坐标定位基态和激发态势能表面的最小值。此外,从研究PDI染料的自组装过程和大尺寸聚集体的振动电子光谱的角度来看,使用针对分子的QMD-FF似乎也是强制性的,因为在柔性侧链群体中发现的GAFF轨迹存在显著误差,这决定了超分子聚集特性。
如今,投资量子计算也是一件令人害怕的事情,因为量子计算股票的价格既受到投机本能的驱动,也受到人工智能革命中一些摇滚明星的意见的驱动,如果我可以这样说,在预测该策略的潜在威力和何时可能成为现实方面,他们可能并不比我们其他人知道得更多。人们可能会认为,几周前黄仁勋和马克·扎克伯格对量子计算近期可行性的评论有些自私,他们希望保护自己的地盘免受潜在的改变游戏规则的新技术的侵害,但公平地说,他们也非常积极地推动量子计算技术的前沿发展。可以肯定的是,如果 Nvidia 已经引领了人工智能背后计算能力的指数级增长,那么量子计算的潜力——它可以提供“双指数”计算加速(这被称为奈文定律)——将使基于最快 NVDA GPU 的传统计算看起来是线性的。
原子尺度模拟的量子计算算法和实验的发展主要集中在分子的量子化学上,而它们在凝聚态系统中的应用却很少被探索。在这里,我们提出了一种量子算法,用于在目前可用的量子计算机上对凝聚态系统进行动态平均场理论 (DMFT) 计算,并在两个量子硬件平台上进行了演示。DMFT 需要正确描述具有强关联电子的一大类材料。计算上的挑战部分来自于解决与浴耦合的相互作用杂质的有效问题,该问题在传统计算机上随着系统规模呈指数级增长。量子计算机有望实现指数级加速,但迄今为止提出的算法都是基于波函数的实时演化,这需要高深度电路,因此量子硬件的噪声水平必须非常低。我们在此提出了一种替代方法,该方法使用基态和激发态的变分量子本征求解器 (VQE) 方法获得所需的量,作为精确对角化杂质求解器的一部分。我们提出了双位点 DMFT 系统的算法,我们使用传统计算机上的模拟以及超导和捕获离子量子比特上的实验对其进行了基准测试,证明了该方法适用于在当前可用的量子硬件上运行 DMFT 计算。