过程张量是量子梳,描述开放量子系统通过多个量子动力学步骤的演化。虽然有多种方法可以测量两个过程的差异,但必须特别注意确保量词遵循物理上可取的条件,例如数据处理不等式。在这里,我们分析了量子梳一般应用中常用的两类可区分性度量。我们表明,第一类称为 Choi 散度,不满足重要的数据处理不等式,而第二类称为广义散度,满足。我们还将量子信道广义散度的一些其他相关结果扩展到量子梳。最后,鉴于我们证明的性质,我们认为广义散度可能比 Choi 散度更适合在大多数应用中区分量子梳。特别是,这对于定义具有梳状结构的资源理论的单调性至关重要,例如量子过程的资源理论和量子策略的资源理论。
量子密钥分布(QKD)目前正在作为一种技术来维护量子计算机损害传统公共钥匙cryposystems的技术。在本文中,我们对基于QKD的解决方案进行了全面的安全评估,重点介绍了来自学术文献和行业资产的现实用例。我们分析这些用例,评估其安全性并确定部署基于QKD的解决方案的可能优势。我们进一步将基于QKD的解决方案与量词后密码学(PQC)进行了比较,这是量子计算机损害传统的公共密钥密码系统时,可以实现安全性的替代方法,评估了它们各自对每种情况的适用性。基于此比较分析,我们批判性地讨论并评论了哪种用例QKD适合于考虑实施复杂性,可扩展性和长期安全性等因素。我们的发现有助于更好地理解QKD在未来的加密基础架构中所扮演的角色,并为考虑QKD部署的决策者提供指导。
摘要:在现代,密码学被认为是数学和计算机科学的分支,并且与信息安全密切相关。随着互联网的加速进度和数字通信的增加,对加密保护的更强大,更有效的方法的需求变得更加明显。随着计算能力的快速增加,破坏加密算法的潜力也会增加。现代密码学中的这一事实创造了对更强大,更先进的加密算法的需求。现代密码学的一个开发方向是量词后加密图,它可以承受量子计算机的攻击。除了对传统加密技术的潜在威胁外,还可以将人工智能工具与开发和实施加密算法的过程相结合。例如,高级机器学习算法可用于识别加密系统和算法中的潜在漏洞并提高其安全性。随着技术的不断发展,密码学领域正在开发新技术,以使其领先新的威胁。在本文中,探讨了现代密码学的当前成就,并解释了该领域的研究观点。
摘要 - 量子计算的出现对传统的加密系统构成了深远的威胁,暴露了损害依赖RSA,ECC和类似经典加密方法的数字通信渠道安全性的漏洞。量子算法,尤其是Shor的算法,它利用了量子计算机的固有计算能力来有效地解决这些加密方案的基础数学问题。在响应中,量词后加密(PQC)成为一个关键领域,旨在开发弹性加密算法不受量子攻击的影响。本文描述了经典加密系统量量子攻击,阐明量子计算的原理的脆弱性,并介绍了各种PQC算法,例如基于晶格的密码学,基于代码的密码,基于哈希的密码学和多变量多核电密码学。该研究强调了PQC在量子计算进步中确保数字通信的重要性,这项研究强调了其在面对新兴量子威胁时在保护数据完整性,机密性和真实性方面的关键作用。
摘要 - 量词计算已被广泛应用于各个领域,例如量子物理模拟,量子机学习和大数据分析。然而,在数据驱动范式的领域中,如何确保数据库的隐私正在成为至关重要的问题。对于古典计算,我们可以通过手动添加噪声来结合差异隐私(DP)的概念,以满足隐私保存标准。在量子计算方案中,研究人员通过考虑量子噪声将经典DP扩展到量子差异隐私(QDP)。在本文中,我们提出了一种新颖的方法来满足QDP定义,通过考虑投影操作员测量产生的错误,该错误表示为射击声。然后,我们讨论可以通过镜头噪声实现的隐私预算数量,这是保护隐私保护水平的指标。此外,我们在量子电路中提供了带动噪声的量子噪声的QDP。通过数值模拟,我们表明射击噪声可以有效地提供量子计算中的隐私保护。索引术语 - Quantum计算,差异隐私,投影操作员测量
与与每个成员的琐碎解决方案相比,与每个成员进行琐碎的解决方案相比,多重电键封装机制(MKEM)提供了可扩展的解决方案,并在带宽和计算成本中节省了可节省的解决方案。MKEM上的所有先前作品仅限于经典假设,尽管已知某些通用构造,但它们都需要大多数量词后方案不共享的特定属性。在这项工作中,我们首先提供了一种简单而有效的MKEM的通用结构,可以通过多功能假设(包括量词后的假设)进行实例化。We then study these mKEM instantiations at a practical level using 8 post-quantum KEM s (which are lattice and isogeny-based NIST candidates), and CSIDH, and show that compared to the trivial solution, our mKEM offers savings of at least one order of magnitude in the bandwidth, and make encryption time shorter by a factor ranging from 1.92 to 35.此外,我们表明,通过将MKEM与MLS使用的TreeKem协议(用于安全组消息传递的IETF草稿)相结合 - 我们获得了显着的带宽节省。
霍尔逻辑提供了一种面向语法的程序正确性推理方法,并且已被证明在经典和概率程序的验证中非常有效。现有的量子霍尔逻辑提案要么缺乏完整性,要么仅支持量子变量,从而限制了它们的实际应用能力。在本文中,我们针对一种涉及经典和量子变量的简单 while 语言提出了一种量子霍尔逻辑。对于用该语言编写的量子程序的部分正确性和完全正确性,证明了其合理性和相对完整性。值得注意的是,由于对经典量子态和相应断言有了新的定义,该逻辑系统非常简单,与用于经典程序的传统霍尔逻辑相似。此外,为了简化实际应用中的推理,提供了辅助证明规则,支持在断言的经典部分引入析取和量词,在量子部分引入超算子应用和叠加。最后,对一系列实用量子算法,特别是Shor因式分解的整体算法进行了形式验证,以证明该逻辑的有效性。
(L1) 第一单元:数理逻辑:命题演算:语句和符号、联结词、合式公式、真值表、同义反复、公式等价性、对偶律、同义反复蕴涵、范式、语句演算的推理理论、前提的一致性、间接证明方法、谓词演算:谓词、谓词逻辑、语句函数、变量和量词、自由和有界变量、谓词演算的推理理论。第二单元:集合论:集合:集合上的运算、包含-排斥原理、关系:性质、运算、分割和覆盖、传递闭包、等价性、兼容性和偏序、哈斯图、函数:双射、组合、逆、排列和递归函数、格及其性质。第三单元:组合学和递归关系:计数基础、排列、重复排列、循环和限制排列、组合、限制组合、二项式和多项式系数和定理。递归关系:生成函数、序列函数、部分分式、计算生成函数系数、递归关系、递归关系公式、通过代换和生成函数解决递归关系、特征根法、解决非齐次递归关系
摘要 - 由于新通信标准的最新进展,例如5G新广播和5G,以及量子计算和通信中的新需求,因此出现了将处理器集成到节点的新要求。这些要求旨在在网络中提供灵活性,以降低运营成本并支持服务和负载平衡的多样性。他们还旨在将新的和经典算法集成到有效和通用平台中,执行特定操作,并参加延迟较低的任务。此外,对于便携式设备必不可少的一些加密算法(经典和量词后),与错误校正代码共享相同的算术。例如,高级加密标准(AES),椭圆曲线密码学,经典mceliece,锤击准循环和芦苇 - 固体代码使用GFð2mÞ算术。由于此算法是许多算法的基础,因此在这项工作中提出了一种多功能的RISC-V Galoisfald Isa扩展。使用Nexys A7 FPGA上的SWERV-EL2 1.3实现并验证了RISC-V指令集扩展名。此外,对于AE,芦苇 - 固体代码和经典的McEliece(Quantum Pryptography),还达到了五次加速度,以增加逻辑利用率增加1.27%。
摘要 - 量词计算是有效解决大型和高复杂性问题的有希望的范式。为了保护量子计算隐私,开创性的研究工作为重新定义差异隐私(DP)(即量子差异隐私(QDP)(QDP))以及量子计算产生的固有的噪声而采取的差异性隐私(DP)。但是,这种实施方法受到固有噪声量的限制,这使得QDP机制的隐私预算固定和无法控制。为了解决这个问题,在本文中,我们建议利用量子误差校正(QEC)技术来减少量子计算错误,同时调整QDP中的隐私保护水平。简而言之,我们通过决定是否在多个单个量子门电路的门上应用QEC操作来逐渐降低量子噪声错误率。我们为QEC操作后的一般错误率和相应的隐私预算提供了一个新的计算公式。然后,我们使用多级串联QEC操作来扩展以实现进一步的降噪。通过大量的数值模拟,我们证明QEC是调节量子计算中隐私保护程度的可行方法。索引术语 - Quantum Computing,量子噪声,不同的隐私,量子错误校正