功率模块中的引线键合是封装中最薄弱的环节之一,通常会导致整个功率模块故障。与 CTE 不匹配相关的引线键合中的热机械应力会导致裂纹扩散到键合界面附近的区域。在本文中,键合过程后的扫描电子显微镜 (SEM) 分析清楚地显示了引线和芯片金属化界面附近的小晶粒和不同的纹理。为了提高引线键合的可靠性,建议在功率模块制造后进行热处理。热处理通过增加晶粒尺寸、降低位错密度和合并引线和金属化的晶粒,对键合区域产生积极影响。此外,已进行的功率循环显示,与由未经处理的相同(交付时)功率 IGBT 模块组成的参考产品相比,经过热处理的功率模块的使用寿命有所增加。
在过去的二十年中,金属有机框架(MOF)已成为广泛开发的多孔材料类别,并越来越被认为是基于膜的CO 2分离的有希望的候选者。这种潜力主要源于故意自定义其结构和功能以增强与客人分子相互作用的能力。在这项研究中,我们探讨了基于卟啉的MOF的MOF-525作为混合基质膜(MMM)中的纳米填料,由6fda- dam(6fda:6fda:2,2-2-二甲基苯基)(3,4-二甲基苯基)六氟丙烷氨基丙烷硫氨酸酯dian Hydridiide; CO 2 /N 2和CO 2 /CH 4分离的聚合物二氨基苯)分离。之所以选择此特定的MOF,是因为有可能将其卟啉环金属量化以量身定制CO 2分子与MOF框架之间的相互作用。结果,无需使用很高的纳米颗粒载荷而无需使用很高的纳米颗粒加载而无需使用金属化的MOF-525的MMM的CO 2 /N 2和CO 2 /CH 4分离性能。与裸露的聚合膜和2 wt%的MOF-525 mmm相比,可以观察到2 wt%金属的MOF-525 MMM的膜渗透性和选择性提高约20%。对MMM的气体传输特性的进一步分析表明,改进主要是由于MMM中增强的CO 2溶解度以及金属化的MOF-525和CO 2分子之间的相互作用改善。但是,还发现2和5 wt%是最佳载荷值,高于该值,高于该值,MOF纳米颗粒之间的界面缺陷和由粒子聚集引起的聚合物开始出现,从而降低了膜性能。也通过分子模拟证实了这一点,其中尤其是在高颗粒载荷时观察到麦克斯韦模型上的一些高估,这表明非选择性空隙的凝聚力和堆积。尽管如此,我们在这项研究中已成功地显示了在MMM中使用金属的卟啉MOF进行CO 2分离的高效率和效率,因为仅需要相对较低的颗粒载荷(约2 wt%)才能改善膜性能。
在 DLW 技术中,值得注意的是直接激光金属化 (DLM) 技术,该技术专注于精确选择和合成前体,用一定强度和脉冲持续时间的激光照射,导致化学反应并在表面形成金属微图案 [23,37,38]。例如,研究表明,DLM 可成功用于在玻璃和陶瓷表面制造铜、镍、金和其他金属基微图案 [39,40,41]。由于许多纳米材料的前体制备可能很复杂且耗时,DLM 方法的进一步发展导致找到了廉价、环保且易于合成的新型前体。研究表明,深共熔溶剂 (DES) 可能取代人们所寻求的前体,这种溶剂此前已被证明是分析化学中的有效萃取剂 [42] 以及电化学金属化的介质 [43]。
基于可用的GAAS,GAN或SIC半导体,对高功率电子设备的需求不断增长,能够在超过200°C的温度下连续运行[1-3]。这需要芯片到基底组装技术的必要变化以及对替代组装基板的研究。在如此高的连续操作温度下,不能使用SAC焊料和层压板底物。SAC焊料连续操作的限制是在150°C左右的温度,而不是最佳导热率:低于50 W/MK。在底物方面,正在研究带有Cu,Ag,Au或Ni安装金属化的陶瓷底物。这些要求在过去十年[4-7]中对其他组装技术(例如基于Ag糊的烧结或滑动(固体液体互化)技术)的兴趣日益增长[4-7]。基于糊状的烧结技术正在变得重要。通过正确调整温度和烧结时间以及接触压力,具有非常好的粘附,导热率和可靠性的接触压力。经典的烧结过程可以在200°C至300°C的温度下进行,范围从10 MPa到40 MPa。键合过程的参数取决于糊剂中Ag粉末粒的大小和形状,添加剂以防止结块和使用的溶剂[8]。
5.1. 封装柱中的新月形键合位置 5.2. 键合焊盘中的球形键合位置 5.3. 球形键合与相邻金属化的分离 5.4. 球形键合位置毗邻芯片 5.5. 球形键合形成最小值 5.6. 球形键合形成最大值 5.7. 球形键合尺寸(插图) 5.8. 球形键合化合物键合 5.9. 球形键合线出口 5.10. 球形键合线中的变形 5.11. 球形键合线环路,公共线 5.12. 球形键合应力释放和线环路 5.13. 球形键合应力释放和线环路(插图) 5.14. 楔形键合尺寸(插图) 5.15. 楔形键合形成,最小值,小线直径 5.16. 楔形键合形成,最大值,小线直径 5.17.楔形键合形成,大线径 5.18. 楔形键合放置于柱体上,大线径 5.19. 楔形键合线从柱体退出 5.20. 楔形键合应力释放,大线径 5.21. 安全键合 - 新月键合上的球形键合 6. 外部视觉 ......................................................................................................................................................................... 56
5.1.封装柱中的新月形键合放置 5.2.键合焊盘中的球形键合放置 5.3.球形键合与相邻金属化的分离 5.4.球形键合放置于芯片附近 5.5.球形键合形成最小值 5.6.球形键合形成最大值 5.7.球形键合尺寸(图示) 5.8.球形键合化合物键合 5.9.球形键合线出口 5.10.线中的球形键合变形 5.11.球形键合线环路,公共线 5.12.球键应力释放和导线环路 5.13。球键应力释放和导线环路(图示) 5.14。楔形键合尺寸(图示) 5.15。楔形键合形成,最小,小线径 5.16。楔形键合形成,最大,小线径 5.17。楔形键合形成,大线径 5.18。楔形键合放置在柱上,大线径 5.19。楔形键合线从柱中退出 5.20。楔形键合应力释放,大线径 5.21。安全债券 - 新月债券上的球形债券 6。外部视觉 ...................................................................................................................................................................... 56
在背面金属化之前,晶圆会被减薄,因为基板是设备的功能部分。300 毫米/12 英寸晶圆要么减薄到约 200 微米厚,要么遵循所谓的 Taiko 晶圆研磨原理。在后一种情况下,硅晶圆由一个外部 Taiko 环和减薄的硅膜组成。对于 300 毫米/12 英寸晶圆,该膜会根据设备电压等级减薄到 60、90 或 120 微米。薄基板的热容量低,因此需要严格控制工艺温度。沉积过程中的温度对固有薄膜应力有显著影响。为了最大限度地减少晶圆弯曲,必须最大限度地减少金属层堆栈引入的应力。CLUSTERLINE® 采用特殊的卡盘设计,可控制晶圆温度而不会损坏正面。在标准应用中,使用凹陷卡盘配置。在这种经典设计中,晶圆在沉积过程中位于外环上,从而防止与设备表面接触。然而,尽管凹陷式卡盘是一种经济高效的解决方案,但由于缺乏主动卡盘,热耦合受到限制。因此,对于需要更严格温度控制的应用,独特的 BSM-ESC(用于背面金属化的静电卡盘)是首选。
摘要:激光铭刻的石墨烯(LIG)是一种用于微电子应用的新兴材料,用于开发超级电容器,软执行器,互动发电机和传感器。制造技术很简单,但是文献中没有很好地记录了LIG质量的批处理变化。在这项研究中,我们进行了实验,以表征在电化学传感中应用的LIG电极制造中的批处理变化。在聚酰亚胺膜上使用CO 2激光系统合成了许多批次36个LIG电极。使用角膜测量法,立体显微镜,开路电位计和环状伏安法进行了LIG材料。疏水性和电化学筛选(循环伏安法)表明使用商业参考和反电极时,LIG电极批处理变化小于5%。金属化的lig化导致峰值电流和特定电容(阳极/阴极曲线之间的面积)显着增加。但是,批处理变化增加到约30%。研究了两种不同的铂电沉积技术,包括电静态和频率调节的电沉积。研究表明,具有高特异性电容和峰值电流的金属级连杆电极的形成可能是以高批量变异性为代价的。文献中尚未讨论此设计权衡,如果需要进行大规模使用的扩展传感器设计,这是一个重要的考虑。该研究的数据集可通过开放访问存储库获得。这项研究为LIG材料特性的变化提供了重要的见解,以扩展LIG传感器的可扩展开发。需要进行其他研究来了解这种变异性的潜在机制,以便可以开发提高重复性的策略来改善质量控制。
摘要 人们对将玻璃用作 2.5D/3D 应用的基板的兴趣日益浓厚。玻璃具有许多材料特性,非常适合用作中介层基板。基于玻璃的解决方案通过利用规模经济以及按设计厚度形成基板,为降低成本提供了巨大机会。人们正在开展大量工作来验证玻璃作为中介层基板的价值。一个重要领域是玻璃相对于硅的电气性能。由于玻璃是绝缘体,用玻璃制成的中介层应具有比用硅制成的中介层更好的电气性能。电气特性和电气模型证实了这一优势及其对功能性能的积极影响。由于能够定制玻璃的热性能(例如热膨胀系数 (CTE)),预计在可靠性方面将有进一步的优势。将展示建模结果,以展示如何正确选择 CTE 可以显著降低堆栈翘曲。此外,在玻璃中介层制造的演示方面也取得了重大进展。如今,人们正在制造带有通孔和盲孔的全图案化晶圆和面板。同样重要的是,能够展示利用现有下游工艺对这些基板进行金属化的能力。本文将介绍应用现有下游工艺使用直通和盲孔技术制造功能性玻璃中介层的能力。 关键词 玻璃、中介层、热建模、热膨胀 I. 简介 在过去的几年中,半导体行业在使用玻璃作为中介层基板方面取得了巨大的发展。玻璃具有许多使其成为中介层基板的理想基板的特性,例如:超高电阻率、低介电常数、超低电损耗和可调节的热膨胀系数 (CTE),可管理 3D-IC 堆栈。无论技术性能如何,任何基于玻璃的解决方案还必须在基板材料、通孔形成和后续处理方面提供成本优势。中介层技术对于 2.5D/3D 集成起着重要作用。目前有大量活动来开发基于硅通孔 (TSV) 技术的中介层制造基础设施。虽然 TSV 的可制造性不断提高,但在成本和电气性能方面仍存在一些困难的挑战,这促使人们考虑替代方案
使用高度复杂的微电子,需要一贯实施的反干扰和布线概念。这变得越重要,建筑物的紧凑程度就越大,对现代机器性能的需求就越高。以下安装说明和建议适用于“普通工业环境”。对于所有干扰环境,没有理想的解决方案。应用以下措施时,编码器应处于完美的工作状态:•在串行线的开始和结束时,串行线终止了串行线(在接收/传输和接收/传输之间)(例如,控件和最后一个编码器)。•编码器的接线应与能量线的距离很大,这可能会引起干扰。•屏幕的电缆横截面至少4mm²。•电缆横截面至少0,14mm²。•屏幕的接线和0 V的接线应在可能的情况下径向排列。•请勿扭结或堵塞电缆。•遵守数据表中给出的最小弯曲半径,并避免拉伸和剪切负荷。操作说明由Pepperl+Fuchs制造的每个编码器都使工厂处于完美状态。为了确保这种质量以及无故的操作,必须考虑以下规范:•避免对外壳,尤其是对编码器轴以及编码器轴的轴向和径向超负荷的影响。•只有使用合适的耦合,才能保证编码器的准确性和使用寿命。•必须同时打开和关闭编码器和后续设备的操作电压(例如,控制设备)。•任何接线工作都必须在死亡情况下使用系统进行。•不得超过最大工作电压。这些设备必须以超低安全电压操作。关于将电筛查免疫与植物干扰的免疫力有关的注释取决于正确的筛选。在此字段中,安装故障经常发生。通常仅将屏幕应用于一侧,然后用电线将其焊接到接地端子上,这是LF工程中的有效过程。但是,如果有EMC,则适用HF工程规则。HF工程中的一个基本目标是将HF能量以尽可能低的阻抗传递到地球,以其他方式将能量放入电缆中。通过与金属表面的大面连接实现了低阻抗。必须观察到以下说明:•如果没有等值电流的风险,则将屏幕涂在大地面上的“普通地球”上。•必须将屏幕通过隔热材料后面,并且必须夹在张力缓解以下的大表面上。•如果电缆连接到螺丝型端子,则必须将张力缓解连接到接地的表面。•如果使用插头,则仅应安装金属化的插头(例如带有金属化外壳的子D插头)。请观察张力缓解与住房的直接连接。