该项目将研究纤维蛋白支架的存在如何改变金黄色葡萄球菌生物膜的性质。它将集中于生物膜形状,强度,精确组成,甚至是生物膜抵抗人类细胞攻击或与血小板相互作用的能力(另一种参与血液凝结的细胞)的能力,这都是由生物膜内的纤维蛋白引起的。为此,该项目将研究在存在人血浆和/或纤维蛋白的情况下在实验室生长的生物膜,无论是否添加人类细胞,它将依靠三维显微镜,不同生物膜成分的特异性免疫学染色,以及生物生物物质分析的生物生物物质粘弹性特性。将对从体内金黄色葡萄球菌感染收集的实际生物膜进行类似的分析 - 例如,来自与生物膜相关感染的人类以及体内模型的样本。
摘要:基于mRNA的疫苗技术已得到了显着开发和增强,特别是由mRNA疫苗授权以解决COVID-19-19-19大流行的授权。在纳米尺度开发了各种生物材料,并用作mRNA疫苗输送平台。但是,这些mRNA纳米植物如何影响免疫反应尚未得到彻底研究。因此,我们回顾了当前对各种mRNA疫苗平台的理解。我们讨论了这些平台可以调节宿主先天的免疫性的可能途径,并有助于自适应免疫的发展。我们阐明了它们在降低生物毒性和提高抗原递送效率方面的发展。超出了mRNA疫苗的内置辅助性,我们建议需要补充佐剂才能进行调节和精确控制先天免疫力,并随后进行适应性免疫反应。
摘要尽管医疗保健方面取得了进步,但癌症仍然对人类健康的主要威胁。抗体 - 药物结合物(ADC)是一种有希望的靶向疗法,可以克服对正常组织的不良副作用。在这一领域,当前的挑战是获得偶联物的均匀制剂,其中定义数量的药物与特定的抗体位点结合。基于网站的半胱氨酸共轭通常用于获得同质ADC,但由于需要广泛的抗体工程来确定最佳结合位点和还原 - 氧化方案是每种抗体的特异性,因此这是一种耗时且昂贵的方法。因此,需要对已经批准的抗体疗法提供同质性和直接适用性的ADC平台。在这里,我们用曲妥珠单抗作为模型来描述一种从任何人类免疫球蛋白1(IgG 1)中得出2(IgG 1)的药物与抗体比为2的均质ADC的新方法。该方法基于两个重组HEK293独立培养物中重链(HC)和轻链(LC)的产生,因此未改变原始的氨基酸序列。分离的LC有效地连接到单个药物链链(VCMMAE)构建体并混合到分离的HC二聚体,以获得正确折叠的ADC。根据ADC同质性(HIC-HPLC,MS),纯度(SEC-HPLC),孤立的抗原识别(ELISA)和生物学活性(HER2阳性乳腺癌细胞细胞毒性测定)对工作的相关性进行了验证。
对于参与研究和发现针对这些病原体的新型且更有效的抗菌剂,革兰氏阳性病原体细菌中的多药耐药性是与研究和发现新的且更有效的抗菌剂有关的科学界最为明显的挑战之一。Linezolid, an oxazolidinone antibiotic, is effective for the treatment of infections caused by Gram- positive pathogens resistant to other antibiotics including methicillin-resistant S. aureus (MRSA), vancomycin-resistant enterococci (VRE), and penicillin-resistant Streptococcus pneumoniae [ 1 ].良好的药代动力学和有毒作用利录,与人类口服或静脉内给药一致,代表了显着特征,这些特征使Linezolid成为巨大成功的抗生素[2],也显示出适合降低耐药性发生的几种特征。的确,LineZolid是一种完全合成的药物。因此,没有预期的自然且预先存在的抗性基因可以缓解耐药机制的出现。此外,它具有独特的作用机理,该机制在非常早的阶段靶向细菌蛋白质的合成[3],因此,药物和商业上可用的抗菌药物之间的交叉耐药性将是遥远的。在任何情况下,抗二唑酚耐药细菌的识别[4]已经强调了需要绕开耐药性的不同靶标的新的恶唑烷酮型药物。正在进行结构变化和改进特征的新的恶唑烷酮研究,研究领域非常活跃[5]。在本文中,我们描述了这些linezolid类似物之一,称为10f。在先前的论文[6]中,我们描述了在C-5位置具有尿素和硫库功能的未报告的线索酚类似物的设计,合成和初步抗菌活性。了解这种类似物的作用机理,产生了金黄色葡萄球菌的抗性突变体。
复原 我们建议在打开前先短暂离心此小瓶,使内容物沉至底部。请在去离子无菌水中将蛋白质复原至浓度为 0.1-1.0 mg/mL。我们建议添加 5-50% 的甘油(最终浓度)并分装以在 -20°/-80° 下长期储存。我们默认的甘油最终浓度为 50%。客户可以将其作为参考。
Methhillins of Sttepateococcos in Saudia Aeronia: 1 gennotic of the Forenotic retennations of excinionns admid-from 2 Residential 2 4 , Omniya Fallala 3 , 5 Hirynan 3, Abram is Iphical 3 , Abra Alamma, Mawner 3 , Meler Bazhaf 4, dad 1 , 7 Doaa Bukkal 1 , Abdalgah N. Aljurayan 1, Alnauud T. Aljassham 5, Zeyad A. Aljadadi 6 , Alajil 1 , Rawan 1um , Alighdan , 1 , 9 Abila 12.13 † † † † † † Newcastle 13 University, Newcastle up Tones, NER2 4H, US 14 3 Law ng Abdullah 16 Appointed Steel Scessions and Technology (Shame, Arabal 17 4 Facecol of Acceptance, Newcastle Institute, Newcastle 18 Laborator Sciences, Ppplige Opplid Medical Study, King Sau 20 Friend 20, Rice 1145, the Arabica Apublicary 21 6 Clinicians Scablics, Pulick22 2 7 Execuitive Department of the Laboratorist, Research or Autor Reservation, Seudi 2 Toxicology, Pharmacy, the Universoy Kill, 27 Retreat Differtional forms of Sciences have Technology, 30 Foundation of Javanese, Jerodan Peri Health Script, Dubai, United 33
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2021 年 1 月 11 日发布。;https://doi.org/10.1101/2021.01.11.426237 doi:bioRxiv preprint
1莱布尼兹光子技术研究所(IPHT),莱布尼兹感染研究中心(LPI),07745德国耶拿,德国2号耶拿2感染遗传学研究校园,07743德国耶拿,德国耶拿,3 Hygiene, 1220 Vienna, Austria 5 Institute of Microbiology and Epizootics, Centre for Infection, Medicine School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany 6 Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany 7 Institute of Microbiology, University of Veterinary Medicine, 1210奥地利维也纳; igor.loncaric@vetmeduni.ac.at 8 Poultry Clinics and Laboratory Pöppel, 33129 Delbrück, Germany 9 Department of Pathology and Wildlife Disease, National Veterinary Institute (SVA), 75189 Uppsala, Sweden 10 Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), 75007 Uppsala,瑞典11细菌感染和人畜共患病研究所,弗里德里希·洛夫勒·伊斯蒂特(Friedrich-Loeffler-Institut)(联邦动物健康研究所),07743德国耶拿,德国12个物理化学研究所,弗里德里希·史基勒大学,弗里德里希·史基勒大学,德国jena,07743 jena,jena,jena,jena jena,jena jena jena * sosecence:soneceence:Steence:Steence:Steecectect CortezdeJäckel和Helmut Hotzel已退休。
本文的目的是开发一个专家系统,帮助医生有效地诊断和治疗人类的金黄色葡萄球菌感染疾病。研究的目标包括开发一个专家系统,用于快速诊断和检测人体皮肤上的金黄色葡萄球菌,帮助医生准确治疗葡萄球菌感染性疾病,帮助医院快速决策,提高药物处方的准确性,以及实现计算机化存储过程的系统,并启发知识工作者如何实施基于计算机的决策支持系统及其在医疗保健中的重要性。这项研究的动机是由于金黄色葡萄球菌的诊断和鉴定延迟以及传染病传播的速度快,这些细菌的治疗延迟,医务人员的猜测工作增加导致决策延迟以及医院缺乏电子存储设施。本研究的系统设计采用自上而下的方法,采用专家系统作为方法论,使用的编程语言是 Java,数据库设计是 MySQL。设计后的结果是一个计算机化的独立应用程序,可帮助健康从业者(医生)快速识别、诊断、开处方和治疗人体皮肤上的金黄色葡萄球菌。专家系统将有助于临床快速做出决策。关键词
金黄色葡萄球菌中的染色体突变和靶基因缺失和失活通常使用等位基因交换方法产生。然而,近年来,已经开发出更快速的方法,通常使用基于 CRISPR - Cas9 的系统。在这里,我们描述了最近开发的用于金黄色葡萄球菌的基于 CRISPR - Cas9 的质粒系统,并讨论了它们在靶基因突变和失活中的用途。首先,我们描述如何将 CRISPR - Cas9 反选择策略与重组工程策略相结合以在金黄色葡萄球菌中产生基因缺失。然后我们引入死 Cas9 (dCas9) 和 Cas9 切口酶 (nCas9) 酶,并讨论如何使用与不同核苷脱氨酶融合的 nCas9 酶在靶基因中引入特定的碱基变化。然后,我们讨论如何通过引入提前终止密码子或突变起始密码子,使用 nCas9-脱氨酶融合酶来实现靶向基因失活。这些工具共同凸显了基于 CRISPR - Cas9 的方法在金黄色葡萄球菌基因组编辑中的强大功能和潜力。