通过其对低对称晶体相的依赖性,铁电性本质上是与给定材料相关的相位图较低温度范围的特性。本文提供了结论性的证据,即在铁电Al 1-X SC X N的情况下,低温必须被视为纯粹的术语,因为确认其铁电到 - 偏移过渡温度可以超过1100°C,因此几乎任何其他任何其他薄膜。我们通过研究0.4-2μm厚的Al 0.73 SC 0.73 SC 0.27 N膜在MO底部电极上通过原位高温X射线衍射和渗透者测量在MO底部电极上生长的结构稳定性得出了这一结论。我们的研究表明,在整个1100°C退火循环中,Al 0.73 SC 0.27 N的Wurtzite型结构是通过恒定的C / A晶格参数比率可见的。原位介电常数测量最多执行的1000°C强烈支持此结论,并包括仅在测量间隔非常上端的发散介电常数的开始。我们的原位测量值通过原位(扫描)透射电子显微镜以及极化和容量滞后测量得到很好的支持。这些结果证实了在完整的1100°C退火处理过程中铭刻极化的稳定性旁边的尺度上的结构稳定性。因此,Al 1-X SC X n是第一个容易获得的薄膜铁电薄膜,其温度稳定性几乎超过了微技术中发生的所有热预算,无论是在制造过程中还是设备的寿命,即使在最恶劣的环境中也是如此。
1材料科学与工程与材料研究所,宾夕法尼亚州立大学 - 宾夕法尼亚大学公园,16802,美国2,美国2宾夕法尼亚大学化学系 - 宾夕法尼亚大学 - 宾夕法尼亚大学,19104年,19104年,19104年,美国3号材料科学与工程系,宾夕法尼亚州31. penns -penn -pennia -penn -pennia -pennia -pennia -pennia -pennia -pennia -pennsy -pennia -pennsy -pennia -pitburgh,pictburgh,pitturgh,pictburgh,pitturgh,pitturgh,pitturgh普渡大学机械工程和birck纳米技术中心 - 印第安纳州拉斐特47907,美国5微型系统工程,科学与应用,桑迪亚国家实验室 - 新墨西哥州阿尔伯克基,新墨西哥州87123,美国6 6美国材料科学与工程系,弗吉尼亚州材料科学系 - 弗吉尼亚州材料部 - 弗吉尼亚州弗吉尼亚州弗吉尼亚州及其弗吉尼亚州22222.120900404,田纳西州,诺克斯维尔 - 诺克斯维尔田纳西州,37916,美国8纳米相材料科学中心,橡树岭国家实验室-Oak Ridge,TN,37830,U.S.A)作者应向谁进行处理:jac5956@psu.edu
Moyu Chen 1 † , Yongqin Xie 1 † , Bin Cheng 2* , Zaizheng Yang 1 , Xin-Zhi Li 3 , Fanqiang Chen 1 ,
摘要:初期的铁电特性已经成为一种有吸引力的功能材料,因为它们的潜力是为外来的铁电行为而设计的,因此具有巨大的希望,可以扩大铁电家族。然而,到目前为止,他们的人工设计的铁电性远远远远没有与经典的铁电抗衡。在这项研究中,我们通过制定超细纳米域工程策略来应对这一挑战。通过将这种方法应用于基于SRTIO 3的膜的代表性初期铁电膜,我们实现了前所未有的强大铁电性,不仅超过了先前的初期铁电磁记录,而且还可以与经典的铁电极相媲美。,薄膜的不分极化可达到17.0μccm-2,超高的居里温度为973 K.原子尺度研究阐明了这种强大的高密度超细性纳米域在跨越3-10个单位细胞中这种强大的高密度超细性纳米域中这种强大的铁电性的起源。将实验结果与理论评估相结合,我们揭示了潜在的机制,在这种机制中,有意稀释的外国FE元素可以很好地产生更深的Landau能量,并促进了极化的短期排序。我们开发的策略显着简化了非常规铁电的设计,为探索新的和上级铁电材料提供了多功能途径。
谐振隧穿是一种量子力学效应,其中电子传输由量子孔(QW)结构内的离散能级控制。一种铁电谐振隧道二极管(RTD)利用QW屏障的开关电动极化状态来调节设备电阻。在这里,据报道,在All-Perovskite-氧化物BATIO 3 /SRRRUO 3 /BATIO 3 QW结构中发现了鲁棒的室温铁电调节谐振隧穿和负差分抗性(NDR)行为。通过BATIO 3铁电的可切换极性可调节谐振电流振幅和电压,其NDR比调制了≈3个数量级和一个OFF/ON电阻率超过2×10 4的OFF/ON电阻比。观察到的NDR效应被解释了由电子 - 电子相关性驱动的Ru-T 2g和Ru-E G轨道之间的能量带隙,如下性功能理论计算所示。这项研究为未来氧化物电子产品中的基于铁电的量子驾驶装置铺平了道路。
先前的实验提供了分别在二维材料中滑动铁电性和光激发层间剪切位移的证据。在这里,我们发现通过激光照明,在H -BN双层中令人惊讶的0.5 ps中可以实现垂直铁电的完全逆转。综合分析表明,铁电偏振转换源自激光诱导的层间滑动,这是由多个声子的选择性激发触发的。从上层n原子的P z轨道到下层B原子的P z轨道的层间电子激发产生所需的方向性层间力,激活了平面内光学TOTO TOTO TOS TOTO to-1和LO-1声音声模式。由TO-1和LO-1模式的耦合驱动的原子运动与铁电软模式相干,从而调节了动态势能表面并导致超快铁电偏振反转。我们的工作为滑动铁电的超快偏振转换提供了一种新颖的微观见解。
摘要:提出了一个分析子阈值摇摆(SS)模型,以观察当堆叠的SIO 2-中的FERROCTRIC结构用作无连接双门(JLDG)MOSFET的氧化物膜时,SS的变化。60 mV/dec的SS对于在保持晶体管性能的同时减少功率耗散至关重要。如果使用具有负电容(NC)效应的铁电材料,则可以将SS降低到60 mV/dec以下。使用2D电势分布,SS与从漏极电流和栅极之间的关系得出的SS相吻合。作为分析SS模型得出的结果,发现通过调节硅频道,SIO 2和铁电的厚度,也可以在15 nm通道长度下获得60 mV/dec的SS。,随着SIO 2的厚度的增加,SS根据铁电厚度的变化饱和,并且随着硅通道的厚度减小,几乎是恒定的。
近年来,晶体管的尺度不断逼近物理极限,阻碍了计算能力的进一步发展。后摩尔时代,新兴的逻辑和存储器件成为扩展智能计算能力的基础硬件。本文综述了用于智能计算的铁电器件的最新进展。首先阐明了铁电器件的材料性质和电学特性,然后讨论了可用于智能计算的新型铁电材料和器件。全面回顾和比较了用于低功耗逻辑、高性能存储器和神经形态应用的铁电电容器、晶体管和隧道结器件。此外,为了为开发基于高性能铁电的智能计算系统提供有用的指导,本文讨论了实现超大规模铁电器件以实现高效计算的关键挑战。
基于反铁电的介电电容器因其出色的储能性能和在收集脉冲功率方面的非凡灵活性而备受关注。尽管如此,迄今为止,尚未阐明与储能过程固有耦合的原位原子级结构演化途径,以最终理解其机制。本文报道了反铁电PbZrO 3 在存储电子束照射的能量过程中的时间和原子分辨率结构相演变。通过采用最先进的负球差成像技术,本文介绍的定量透射电子显微镜研究阐明了与晶胞体积变化和极化旋转相关的极性氧八面体的层次演化解释了逐步的反铁电到铁电相变。特别是,在动态结构研究过程中建立了一种非常规的铁电类别——具有独特摆线极化序的铁电畸变相。通过阐明原子尺度相变途径,该研究的结果为探索具有非极性到极性相变的储能材料中的新型铁致畸变相开辟了一个新领域。
在过去的十年中,将破裂的反转对称性与金属电导率结合在一起的材料已从思想实验转变为增长最快的研究主题之一。在2013年,在金属3中观察到第一个无可争议的极性转变lioso 3启发了对该受试者的理论和实验性工作的激增,发现了许多材料,这些材料结合了以前被认为是禁忌的特性[nat。mater。12,1024(2013)]。 通常在新生的领域中,兴趣的突然上升伴随着多样化(有时是爆发)术语。 尽管“类似铁电的”金属在理论上是正确确定的,即,在表现出金属电子传输的同时,经历对称性的过渡到极相的材料,但实际材料却发现了多种方法来推动这种定义的边界。 在这里,我们从理论,模拟和实验的角度审查并探索了新兴的极地金属边界,同时引入了统一的分类学。 该框架允许人们描述,识别和分类极性金属;我们还使用它来讨论“铁电”和“金属”一词固有的理论与现实模型之间的一些基本张力。此外,我们强调了静电掺杂模拟在建模极性金属的不同亚类中的缺点,并指出了这种方法的假设如何与实验不同。 我们包括一项已知材料的调查,该调查将极性对称性与金属电导率结合在一起,并根据用于协调这两个顺序及其所得属性的机制进行分类。12,1024(2013)]。通常在新生的领域中,兴趣的突然上升伴随着多样化(有时是爆发)术语。尽管“类似铁电的”金属在理论上是正确确定的,即,在表现出金属电子传输的同时,经历对称性的过渡到极相的材料,但实际材料却发现了多种方法来推动这种定义的边界。在这里,我们从理论,模拟和实验的角度审查并探索了新兴的极地金属边界,同时引入了统一的分类学。该框架允许人们描述,识别和分类极性金属;我们还使用它来讨论“铁电”和“金属”一词固有的理论与现实模型之间的一些基本张力。此外,我们强调了静电掺杂模拟在建模极性金属的不同亚类中的缺点,并指出了这种方法的假设如何与实验不同。我们包括一项已知材料的调查,该调查将极性对称性与金属电导率结合在一起,并根据用于协调这两个顺序及其所得属性的机制进行分类。我们通过使用我们的分类法来描述发现新型极地金属的机会来得出结论。