热力学基本原理、相共存、吉布斯相律和相图 理想气体状态方程和范德华理论的扩展 朗道理论和振动原理(金兹堡-朗道) 理想气体、晶格气体的统计理论和气体与固体合金热力学性质的常规溶液理论。 应力张量的统计力学:维里尔公式 量子谐振子的统计和固体的比热 自旋统计:顺磁性和铁磁性,铁磁性的平均场近似
摘要:在量子理论早期以来,搜索打破晶格晶格对称性的非常规量子阶段一直是物理学的重点,这是由基本兴趣和潜在应用驱动的。突出的例子包括铜土超导体,这些导体以其非常规的D-Wave Cooper配对和无耗散运输而闻名。在本演讲中,我们将讨论我们最近的发现[1],该发现是由我们的早期预测和对非常规旋转型效应的预测和观察结果所激发的[2,3,4]。与共同的铁磁性和抗铁磁性不同,这种非常规的雌雄同体相(请参阅图)打破了晶体晶格的对称性,并在其自旋和电子结构中同时具有d,g或i-甲状化波的特征[1]。d-wave altermagnetism代表了D波超导的磁性类似物。我们通过采用和开发一个对称框架来确定altermagnetism,该框架考虑了涉及电子自旋和晶格的配对转换。该框架正在作为磁晶体研究中的新范式出现。我们将通过讨论(i)半导体MNTE的altermagnetic带结构来证明其有用性,我们最近通过使用光发射光谱[5]和(ii)鉴定了240多种现实的Altermagentic候选者,我们最近通过协作工作对此进行了实验观察。
原子层面的磁相互作用在磁性中起着核心作用。近年来兴起的二维范德华 (vdW) 磁性材料由于其高结晶性、可调性以及可研究不同厚度的可能性,为研究磁相互作用提供了可能性[1,2],其中晶格特性可通过多种具有空间分辨率的探针轻松获取,如扫描探针和拉曼光谱[3-5]。磁相互作用最重要的指标之一是居里温度 (TC)。出于提高 TC 的实际动机,磁相互作用与 TC 之间的关系在 vdW 磁体中得到了广泛的研究。例如,通过电门控(特别是在场效应晶体管的结构中)研究了磁相互作用与电子结构和载流子浓度的变化,这改变了 Cr 2 Ge 2 Te 6 局部磁系统的磁滞曲线,而 TC 没有任何显著变化,而对于类似结构的 Fe 3 GeTe 2 流动磁系统,TC 从 205K 升高到室温以上 [6, 7]。从历史上看,
超导性和磁场超导性和磁场通常被视为竞争对手 - 非常强的磁场通常会破坏超导状态。Paul Scherer Institute的物理学家现已证明,新型超导状态只有在有强的外部磁场时才会在材料Cecoin 5中产生。 然后可以通过修改场方向来操纵此状态。 该材料也已经在较弱的田地中是超导的。 但是,在强场中,创建了一个额外的第二个超导状态,这意味着在同一材料中同时存在两个不同的超导状态。 新状态与抗铁磁性顺序相结合,该顺序与该场同时出现。 在PSI和Grenoble中的Laue-Langevin中检测到了研究人员的特性,研究人员的特性得出了抗铁磁秩序。 [6]物理学家现已证明,新型超导状态只有在有强的外部磁场时才会在材料Cecoin 5中产生。然后可以通过修改场方向来操纵此状态。该材料也已经在较弱的田地中是超导的。但是,在强场中,创建了一个额外的第二个超导状态,这意味着在同一材料中同时存在两个不同的超导状态。新状态与抗铁磁性顺序相结合,该顺序与该场同时出现。在PSI和Grenoble中的Laue-Langevin中检测到了研究人员的特性,研究人员的特性得出了抗铁磁秩序。[6]
*相应的作者: - pparida@iitp.ac..1摘要这项理论研究深入研究了两个六角形铁杆菌单层的结构,电子和电化学特性,1T-法和1H-FEAS,重点介绍其质地元素电池的潜在阳极材料。先前的研究强调了在室温下1T-雌激素的铁磁性质。我们的计算表明,这两个阶段都具有自旋偏振电子带结构的金属行为。电化学研究表明,1T-五叶单层对液离子的离子电导率比1H-FEAS期更好,这归因于0.38 eV的较低的激活屏障。此特征表明充电速度更快。两个富阶段均表现出可比的理论能力(372mahg⁻。),表现优于商业石墨阳极。最大LI原子吸附的平均开路电压为1H-FEAS为0.61 V,1T-FEAS的平均开路电压为0.61 V。在这两个阶段上LI原子的最大吸附上的体积膨胀也非常小于商业使用的阳极材料(例如石墨)。此外,Li原子上的吸附到1H-五叶中可以引起从铁磁性到抗铁磁性的显着过渡,对电子带结构的影响很小。相比之下,1T-FEAS的原始状态仍然不受LI吸附的影响。总而言之,1T-FEAS和1H-FEAS单层作为锂离子电池的有前途的阳极材料的潜力,为LI吸附后的电化学性能和相变行为提供了宝贵的见解。关键字:铁砷化铁,2D物质,阳极材料,扩散屏障,自旋极化。
课程目标本课程介绍了量子物质中的多体物理学。由许多颗粒(玻色子或费米子)组成的系统显示出新型的集体现象,例如,单个颗粒没有类似铁磁性和超流量。它旨在介绍这些现象背后的一般原则,例如基本激发,自发对称性破坏,绝热定理,物质的新兴拓扑阶段等。将讨论用于解释实验的解释(例如线性响应理论和响应函数)的理论语言。本课程均针对实验者和理论家。尽管没有官方先决条件,但想参加本课程的学生被认为对量子力学和统计力学有足够的知识。
操纵磁各向异性的能力对于磁传感和存储工具至关重要。表面碳物种是金属氧化物和高贵金属上限层的成本效益替代品,从而在超薄铁磁性磁性纤维中诱导垂直磁各向异性。在这里,在碳一氧化碳(CO),分散的碳和石墨烯的吸附后修饰了几层厚的CO薄膜中的磁性的不同机制。使用化学和磁灵敏度使用X射线显微镜,在表面碳的积累期间,监测了面向面向非平面自旋的重新定向转变,直至形成石墨烯。互补的磁光测量结果显示,在CO上分散的碳在室温下显示出弱垂直磁各向异性(PMA),而石墨烯覆盖的钴表现出显着的平面外胁迫型。密度功能理论(DFT)计算表明,从CO/CO到C/CO再到石墨烯/CO,磁晶和磁静脉各向异性的组合促进了平面外磁化。各向异性能量弱依赖于碳化物物种覆盖率。相反,碳化学状态从碳化物到石墨的演变伴随着由磁各向异性能量控制的特征域大小的指数增加。除了对碳 - 铁磁铁界面提供基本了解之外,本研究还提出了一种可持续的方法,可在超薄铁磁性磁铁中调整磁各向异性。
量子信息量词是用于分析强相关系统的必不可少的工具。因此,为其计算开发高效且鲁棒的数值方法至关重要。我们提出了一个基于张量交叉插值(TCI)算法系列的一般程序,以在完全一般的框架中解决这一挑战,独立于系统或所考虑的量词。为了证实我们的方法,我们考虑了1D和2D铁磁性模型的非稳定性rényi熵(SRE)和相干性(REC)的相对熵(rec)。此方法不仅展示了其多功能性,而且还提供了一个通用框架,用于探索复杂系统中其他量子信息量词。
传统的参考材料(如 Nil AI/Bronze)具有少量的铁磁性成分,以便达到所需的相对磁导率。由于相关的磁滞,它们的相对磁导率在不同施加的磁场强度下会有所不同。NPL Lowmu 参考材料是使用分散在丙烯酸基质中的铁粉制成的。对于粒径较小的分散铁粉,磁滞曲线基本上是一条直线,梯度几乎恒定。因此,随着施加的磁场强度的增加,相对磁导率保持相对恒定。在图 3a 和 3b 中,基于铁粒子技术的参考材料的相对磁导率与施加的磁场强度(磁导率曲线)的关系被绘制出来,并与传统材料的相对磁导率进行了比较。
ƒ 磁化测量技术已经非常成熟,并且对于材料和器件特性分析仍然至关重要;ƒ 磁显微镜和时间分辨磁测量将继续快速发展;ƒ 将空间和时间分辨率与磁灵敏度相结合是未来的挑战。近年来,NPL 已成为纳米磁学的重要研究中心。NPL 关于纳米制造 0D 磁阵列和纳米线的维度效应的研究已发表在十几篇文章中,并在主要国际会议上发表。特别是,最近的结果表明 GeMn 纳米线具有室温铁磁性,受到了研究界和工业界的热烈欢迎。根据本报告,我们建议未来的 NPL 工作将涉及以下活动: