摘要。在航空电子设备中,飞行员使用头盔显示器 (HMD) 在护目镜上显示外部环境的同步视图和与飞机相关的重要参数。为了完美同步护目镜上的视图,必须同步外部环境的坐标以及飞行员头部运动的坐标。为了定位飞行员头部运动的坐标,称为头部跟踪的过程起着重要作用。头部跟踪可以使用不同的跟踪技术执行,例如光学跟踪、磁跟踪或惯性跟踪。在本文中,六自由度 (6-DoF) 磁运动跟踪装置 (Polhemus Patriot TM ) 用于在模拟器床上实时获取飞行员头部运动的坐标。在跟踪器采集过程中,由于铁磁性引起的磁场干扰,数据可能会丢失。为此,采用自修复神经模型 (SHNM) 来预测丢失的数据。用于恢复的数据有 5200 个 6-DoF 头部运动样本。SHNM 对三组不同的缺失数据的预测准确率超过 85%。将所提模型预测数据的准确率与反向传播神经网络 (BPNN) 模型进行了比较,结果发现 SHNM 模型的准确率优于 BPNN 模型
摘要:在航空电子设备中,飞行员使用头盔显示器 (HMD) 在护目镜上显示外部环境的同步视图和与飞机相关的重要参数。为了完美同步护目镜上的视图,必须同步外部环境的坐标以及飞行员头部运动的坐标。为了确定飞行员头部运动的坐标,称为头部跟踪的过程起着重要作用。头部跟踪可以使用不同的跟踪技术来执行,例如光学跟踪、磁跟踪或惯性跟踪。在本文中,六自由度 (6-DoF) 磁运动跟踪装置 (Polhemus Patriot TM ) 用于在模拟器床上实时获取飞行员头部运动的坐标。在跟踪器获取过程中,由于铁磁性引起的磁场干扰,数据可能会丢失。为此,我们采用自修复神经模型 (SHNM) 来预测缺失数据。用于恢复的数据有 5200 个头部运动的 6-DoF 样本。SHNM 可实现超过 85% 的准确率来预测三组不同的缺失数据。将所提模型预测数据的准确率与反向传播神经网络 (BPNN) 模型进行了比较,结果发现 SHNM 模型的准确率优于 BPNN 模型
最近的实验进步已建立了扭曲的双层过渡金属二甲元化(TMD),它是研究多体物理学的高度可调平台。尤其是,据信,位移场下的同型TMD被认为是由具有自旋依赖性跳相θ的广义三角晶格哈伯德模型描述的。为了探索θ对系统的影响,我们对相关的三角晶格T-J模型执行密度矩阵重新归一化组计算。通过在小孔掺杂下更改θ,我们获得了一个准长范围的超导顺序,并在0 <θ<π/ 3中与电荷和自旋密度波共存。 div>超导性由主导的旋转单线d波和亚尺寸三重态P-波配对组成。有趣的是,S z =±1三个三个配对组件具有配对密度波。此外,我们发现了一个三胞胎超导率区域,与π/ 3 <θ<2π/ 3内的电荷密度波和铁磁性共存,该区域通过spin-flip和衡量变换的联合操作在较小的θ下与以前的相位相关。我们的发现为扭曲TMD系统中的外来超导性提供了实验性搜索的见解和方向。
摘要 二维 (2D) 范德华过渡金属磷三硫属化物家族由于其固有的 2D 反铁磁性而重新引起了人们的关注,这证明它们是单层极限下自旋电子学和磁子学中前所未有且高度可调的构建块。在此,受 Janus 过渡金属二硫属化物中表现出的原子取代潜能的启发,我们从第一性原理研究了基于 MnPS 3 和 NiPS 3 的硒化 Janus 单层的晶体、电子和磁性结构。此外,我们计算了磁振子色散并进行实时实空间原子动态模拟,以探索自旋波在 MnPS 3 、NiPS 3 、MnPS 1.5 Se 1.5 和 NiPS 1.5 Se 1.5 中的传播。我们的计算预测磁各向异性将大幅增强,并会出现较大的 Dzyaloshinskii-Moriya 相互作用,这是由于 2D Janus 层中诱导的反演对称性破缺所致。这些结果为开发 Janus 2D 过渡金属磷三硫属化物铺平了道路,并凸显了它们在磁子应用方面的潜力。
过渡金属二进制元素与磁元素的插入一直是增加研究兴趣的主题,旨在探索各向异性和自旋轨道耦合的新型磁性材料。在本文中,使用化学蒸气传输方法使用不同的生长条件制备了两个具有不同Fe含量的磁性样品。使用物理性质测量系统(PPM,EverCoolⅱ-9T,量子设计)对材料的磁性特性进行了全面研究。结果揭示了研究材料中的不同特征。fe 0.12 Tase 2表现出显着的铁磁磁性,居里过渡温度为50K。但是,其面内磁性较弱,并且在Curie温度下方没有观察到显着的滞后环。Fe 0.25 Tase 2表现出无滞后循环的反铁磁性,并具有高达130 K的néel温度。此发现与Fe X TAS 2中的嵌入铁完全不同,其中只有抗磁性状态发生,而X抗磁性发生的情况只有X大于0.4。我们的研究因此提供了对该新系统的磁性特性的最新见解,并作为对铁含量不同的Tase2化合物的未来研究的参考。
航空推进系统中过滤器碎片分析的改进 执行摘要 磨损碎片分析已被证明是一种有效的油浸系统状态监测工具,被认为是现有状态监测技术的宝贵补充。机油滤清器是有关飞机机械中油浸部件健康状况的潜在丰富信息来源,但在澳大利亚国防军中,机油滤清器作为状态监测工具的利用率通常较低。从历史上看,飞机机油滤清器碎片的分析非常耗时,不适合现场评估。与机油滤清器分析相关的两个主要挑战是以可靠且受控的方式提取碎片,并解释碎片以评估是否需要采取维护措施。特别是,军事环境(涉及定期部署到偏远地区或海上)对从机油滤清器中提取有用信息提出了一系列挑战。此外,引入精细油过滤的益处已得到充分证实,这使得一些传统的油分析技术(如光谱油分析 (SOA))变得无效。在航空推进机械中,这通常使过滤器和磁性碎片检测器成为磨损碎片信息的主要来源。本报告介绍了国防科学技术组织 (DSTO) 两项计划的应用,以改进对机油滤清器磨损碎片的分析。第一项计划涉及将现场手动碎片提取套件应用于 F117-PW-100 发动机(为 C-17A 飞机提供动力)机油滤清器。该套件使维护人员能够方便地提取过滤器碎片并将其放置在过滤器贴片上,以便在需要时进行检查和进一步分析。在这种情况下,用于提取的过程是目前在 RAAF PC-9/A 飞机上使用的手动方法。以前检查该发动机过滤器的方法包括目视检查每个过滤器褶皱并手动计数颗粒。新方法的优点包括更高的提取效率(即与以前的方法相比,碎片回收率更高)以及工作人员的工作更轻松、更省力。第二项举措涉及对一种名为 FilterCHECK 的商业仪器的评估、试用和引入。该设备使用反向流体流动与压缩空气脉动相结合的方式自动提取过滤器碎片。然后将所得浆液通过电感传感器以量化铁磁性和非铁磁性碎片。该仪器已应用于安装在 T56-A-14 和 T-56-A-15 发动机上的外部扫气过滤器(分别驱动 P3C 和 C130-H 飞机)。每隔 150 小时对这些澳大利亚皇家空军 (RAAF) 发动机进行常规过滤器碎片分析。该技术的优势包括处理过滤器所花费的时间更少、消除了工作人员接触危险溶剂的可能性以及保真度更高的颗粒检测方法。
摘要:在演讲中,我将介绍近年来我们发表的三个不同的主题。首先,我将介绍有关栅极控制超导性的微观理论的工作[1]。最近,在许多实验中,已经报道了栅极介导的超导纳米旋转的超电流抑制。然而,到目前为止,对这些观察结果的微观理解仍在研究中。在我们的工作中,我们表明,桥表面的少量磁杂质可以显着有助于抑制超导性,因此在应用栅场时系统内部的超电流。这是因为栅场可以通过表面和超导体的磁杂质之间的交换相互作用来增强depairing。接下来,我将介绍基于基于超导体磁铁的杂种结构的Terahertz辐射检测的工作[2]:已知这些杂种结构在整个隧道交界处都表现出巨大的热电效应。基于这种巨大的热电效应,我们表明,对于在100至200 mk的温度下运行的现实检测器,能量分辨率可以低至1 MEV。这允许在1THz或以下的光子频率下进行宽带单光子分辨率。终于,我将介绍我们在带电子系统的浴室控制轨道磁性方面的工作[3]。系统浴缸的纠缠有望破坏相干的电子运动和淬火轨道磁性。物理。修订版b,108,184508/1-184508/8。[2] Subrata Chakraborty和Tero。J. Appl。在我们的工作中,我们表明,适当量身定制的浴室可以提高多播电子系统的轨道磁磁敏感性,甚至可以将轨道顺向磁反应转换为磁管磁性,因为系统浴耦合的增加。我们还展示了如何利用状态的van Hove奇异性来产生轨道磁化易感性的巨大增强。我们的工作为通过浴室工程参考控制带电子系统的轨道磁反应的可能性打开了大门:[1] Subrata Chakraborty,Danilo Nikoli´c,Juan Carlos Cuevas,Juan Carlos Cuevas,Francesco Giazotto,Angelo di Bernardo,Elio Mario Morsos cococo and Marios Cuoco)通过栅极控制的表面下降抑制超电流。T.Heikkilâa(2018)。 基于超导体 - 铁磁性连接的热电辐射检测器:量热度。 Phys。,124,123902/1–123902/7。 [3] Subrata Chakraborty和So Takei(2024)。 通过浴工程控制带电子系统的轨道磁性。 物理。 修订版 b,110,L140405/1 – L140405/5。 信,编辑的建议T.Heikkilâa(2018)。基于超导体 - 铁磁性连接的热电辐射检测器:量热度。Phys。,124,123902/1–123902/7。[3] Subrata Chakraborty和So Takei(2024)。通过浴工程控制带电子系统的轨道磁性。物理。修订版b,110,L140405/1 – L140405/5。信,编辑的建议
摘要:采用基于密度泛函理论(DFT)结合LDA+U算法的第一性原理计算方法,研究了Co/Mn共掺杂ZnO纳米线的电子结构与磁性能,重点研究了Co/Mn原子的最佳几何置换位置、耦合机制和磁性来源。模拟数据表明,所有构型的Co/Mn共掺杂ZnO纳米线都表现出铁磁性,并且Co/Mn原子取代(0001)内层中的Zn使纳米线进入基态。在磁耦合态,在费米能级附近检测到明显的自旋分裂,并且Co/Mn 3d态与O 2p态之间观察到强烈的杂化效应。此外,建立了形成Co 2+ -O 2 − -Mn 2+磁路的铁磁有序结构。此外,计算结果表明磁矩主要来源于Co/Mn的3d轨道电子,磁矩的大小与Co/Mn原子的电子结构有关。因此,通过LDA+U方法获得了Co/Mn共掺杂ZnO纳米线电子结构的真实描述,展示了其作为稀磁半导体材料的潜力。
摘要当前的研究工作理论上研究了重型费米亚CECU2SI2超导体中超导性和抗势力磁性之间的可能共存。By developing a model Hamiltonian for the system under consideration, and by employing the double time-temperature dependent Green's function formalism, mathematical computations have been conducted, and phase diagrams of superconducting gap parameter (Δ) versus temperature ( T ), superconducting transition temperature ( T C ) and antiferromagnetism order temperature ( T N ) versus antiferromagnetic order parameter ( η ) have been使用MATLAB脚本单独绘制。最后,通过组合两相图,已经证明了重费菲尔米CECU2SI2超导体中超导性和抗势力磁性之间的可能共存。我们在这项研究中采用的模型显示了一个共同的区域,在该区域中,超导性和抗磁性可以在超导CECU 2 SI 2中共存。我们在这项工作中获得的结果与以前的发现兼容。关键字:超导性,抗铁磁性,共存,绿色功能,CECU 2 SI 2,超导顺序参数。1。简介
磁体/超导体混合物 (MSH) 有望成为新兴拓扑超导相 [1, 2, 3, 4, 5]。接近 s 波超导体的一维 (1D) [6, 7, 8] 和二维 (2D) [9, 10, 11, 12] 磁系统均已显示出具有零能量端态和手性边缘模式的带隙拓扑超导的证据。最近,有人 [13] 提出,块体过渡金属二硫属化物 4Hb-TaS 2 是一种无间隙拓扑节点超导体 (TNPSC) [14]。然而,目前尚未在 MSH 系统中实验实现 TNPSC。本文我们介绍了在 s 波超导体顶部的反铁磁 (AFM) 单层中发现 TNPSC。我们的计算表明,拓扑相由 AFM 序驱动,从而导致无间隙时间反转不变拓扑超导态的出现 [15]。利用低温扫描隧道显微镜,我们在反铁磁岛的边界观察到低能边缘模式,它将拓扑相与平凡相分开。正如计算所预测的那样,我们发现边缘模式的相对光谱权重取决于边缘的原子结构。我们的研究结果确立了反铁磁性和超导性的结合是设计二维拓扑量子相的新途径。