本文在过去五十年中通过拉曼光谱法对石墨烯中缺陷计量的演变提供了历史记录。将拉曼散射应用于石墨材料中疾病水平的研究可以追溯到1970年代,并且在该领域发生了很大的进步,尤其是在2006年分离石墨烯之后。文章开始介绍与结构缺陷有关的物理学,破坏了晶体固体中的翻译对称性,引入了拉曼光谱中的选择规则的放松,该规则表现为被障碍引起的峰值,然后将其估计为重要的里程碑,并提供了主要现有协议的实际摘要。此外,我们探讨了尖端增强的拉曼光谱法对石墨烯材料中缺陷的基本方面的更深入了解,这是由于其具有高空间分辨率的光谱测量的能力。总而言之,我们概述了这种创新技术进一步利用这种创新技术的前景,以增强石墨烯缺陷的科学和计量及其在其他二维系统中的应用。
摘要 合金纳米粒子是基础研究的一个非常有趣的课题,同时在工业催化、微电子、传感器和医学方面也有很多有用的应用。它们的性质取决于原子和化学结构,而原子和化学结构一直是深入研究的主题。本文介绍了 Pt 基纳米系统化学排序和表面偏析的一些理论预测趋势,尤其是过渡金属和贵金属,它们的催化、磁性和光学性质众所周知。通过将两种不同的金属结合,可以提高催化的选择性,或增加磁系统中的磁各向异性,或调节光吸收中的表面等离子体共振,但问题是这两种物质将如何混合或分离,以及它们将如何分布在纳米粒子的表面和核心中。本文将从原子模拟中获得一些关于 Pt-X、X=Co、Pd 或 Ag 系统的一般概述。它将纳米合金所采用的化学结构与系统的化学特性(就块状合金中的有序趋势和表面合金中的表面偏析而言)联系起来。
靶向 SMAC 模拟物 SW IV-134 可在卵巢癌临床前 1 模型中增强铂类化疗 2 3 Pratibha S. Binder 1 † 、Yassar M. Hashim 2 †† 、James Cripe 1 、Tommy Buchanan 1 、Abigail Zamorano 1 、4 Suwanna Vangveravong 2 、David G. Mutch 1,3 、William G. Hawkins 2,3 、Matthew A. Powell 1,3 和 Dirk 5 Spitzer 2,3* 6 7 1 华盛顿大学医学院妇产科妇科肿瘤科,密苏里州圣路易斯 9 2 华盛顿大学医学院外科系,密苏里州圣路易斯 10 3 美国密苏里州圣路易斯 Alvin J. Siteman 癌症中心。 11 12
r(b)3;与t(2; 3)31616,607)相媲美,适度(用于检查,r(b)13)或弱(例如r(b)4,r(b)s),它们用于构造CBX 1!r( +)菌株进行分析。在我们研究的所有R( +)/或杂合子中,每个UBX基因均在机翼和Haltere碟片中产生了UBX RNA的一半(数据未显示)。如上所述, + U BX基因在CBX 1 I +机翼盘中产生约20%的UBX RNA,而反向反射抑制的重排则降低了机翼盘中的UBX RNA的总水平(图2)。令人惊讶的是,在R( +)!CBX 1杂合翼盘的NY中,源自 +染色体的UBX RNA的比例没有显着变化(图3)。这表明重排减少了两个同源物中的UBX表达,但并未具体消除转移。我们的结果表明,CBX 1突变在两个同源物上激活了机翼盘中的UBX表达,这证实了调节元件可以在Trans中起作用的预言(总结如图4)。由CBX 1诱导的翼盘表达对z功能和染色体异常敏感,与以前的基于表型或分子测定的先前提议相一致的观察结果2•17•18•18•但是,我们发现z 0 muta-tion tion tion tion tion tion and Chromososome的机制出乎意料的差异会影响表达。尽管染色体重排和Z 0基本上具有无法区分的表型后果,即抑制CBX表型,但只有Z 0专门破坏了反式激活。o出乎意料的是,染色体重排降低了两个同源物的表达。这些结果表明,在正常的野生蝇中,染色体突触增强了UBX基因在两个同源物上的表达,这表明同源染色体之间的关联对转录具有一般增强作用。我们假设果蝇中观察到转向的系统是1-9是可以以特殊敏感性来测量基因表达水平的系统。转向可以提供一种有用的方法来研究可以巧妙地影响基因的同源染色体之间的相互作用。我们的发现,同源染色体之间的相互作用似乎增强了两种染色体的表达水平具有可能的影响。特别是我们注意到,诸如易位的总染色体重排可能会导致受影响的染色体的基因表达的全球降低。因此,他们可以为与单倍症和癌症相关的DI SEASE状态做出贡献,并且可以调节物种形成期间的适应性。
Berry相[1]通过绝热循环过程后获得的相位揭示了量子波函数的几何信息,它的概念为理解许多材料的拓扑性质奠定了基础[2–13]。Berry相理论建立在纯量子态上,例如基态符合零温统计集合极限的描述,在有限温度下,密度矩阵通过将热分布与系统所有状态相关联来描述量子系统的热性质。因此,将Berry相推广到混合量子态领域是一项重要任务。已有多种方法解决这个问题[14–21],其中Uhlmann相最近引起了广泛关注,因为它已被证明在多种一维、二维和自旋j系统中在有限温度下表现出拓扑相变[22–26]。这些系统的一个关键特征是 Uhlmann 相在临界温度下的不连续跳跃,标志着当系统在参数空间中穿过一个循环时,底层的 Uhlmann 完整性会发生变化。然而,由于数学结构和物理解释的复杂性,文献中对 Uhlmann 相的了解远少于 Berry 相。此外,只有少数模型可以获得 Uhlmann 相的解析结果 [ 22 – 30 ] 。Berry 相是纯几何的,因为它不依赖于感兴趣量子系统时间演化过程中的任何动力学效应 [ 31 ] 。因此,Berry 相理论可以用纯数学的方式构建。概括地说,密度矩阵的 Uhlmann 相是从数学角度几乎平行构建的,并且与 Berry 相具有许多共同的几何性质。我们将首先使用纤维丛语言总结 Berry 相和 Uhlmann 相,以强调它们的几何特性。接下来,我们将给出玻色子和费米子相干态的 Uhlmann 相的解析表达式,并表明当温度趋近于零时,它们的值趋近于相应的 Berry 相。这两种相干态都可用于构造量子场的路径积分 [32 – 37]。虽然单个状态中允许有任意数量的玻色子,但是泡利不相容原理将单个状态的费米子数限制为零或一。因此,在玻色子相干态中使用复数,而在费米子相干态中使用格拉斯曼数。玻色子相干态也用于量子光学中,以描述来自经典源的辐射 [38 – 41]。此外,相干态的Berry相可以在文献[ 42 – 45 ]中找到,我们在附录A中总结了结果。我们对玻色子和费米子相干态的 Uhlmann 相的精确计算结果表明,它们确实携带几何信息,正如完整概念和与 Berry 相的类比所预期的那样。我们将证明,两种情况下的 Uhlmann 相都随温度平稳下降,没有有限温度跃迁,这与先前研究中一些具有有限温度跃迁的例子形成鲜明对比 [ 22 – 30 ] 。当温度降至零度时,玻色子和费米子相干态的 Uhlmann 相接近相应的 Berry 相。我们对相干态的结果以及之前的观察结果 [ 22 , 24 , 26 ] 表明,在零温度极限下,Uhlmann 相还原为相应的 Berry 相。
在此公告之日起,公司仍在最终确定该小组截至2024年12月31日的年度结果。本公告中包含的信息只是董事会的初步评估,基于该小组的未经审核的合并管理帐户止当年截至2024年12月31日目前可供该公司可用的年度,并且不是基于董事会审计委员会(审计委员会审核委员会)审查或确认的任何数字或信息,或审核或审查了该公司或审核的公司。截至2024年12月31日的年度小组的实际结果可能与本公告中披露的结果不同。不得将它们作为该集团当前或未来的运营或财务绩效的量度或指示,也不应将其作为相应数字组的代表作为代表。因此,仅为股东和投资者的参考提供了上述数字。建议股东和潜在投资者仔细阅读截至2024年12月31日的年度公司的年度业绩公告。
摘要。在这项工作中,通过拉曼光谱法研究了质子照射和铂杂质对硅样品晶体结构的影响。已经确定,具有铂的Si的单晶掺杂会导致小变化和拉曼光谱中新振动的出现。在521 cm – 1处主硅峰的强度降低了1.6倍,而其FWHM实际上没有变化,约为4.0 cm – 1。这种峰强度的降低可能是由于PT扩散而导致硅晶格结构中键的键和破坏。表明,在Si 光谱中60–280 cm1范围内的新振动的出现与元素PT的存在和PTSI的形成有关。已经发现,具有600 keV质子的Si 样品的照射会导致拉曼光谱发生变化,而PT和/或PTSI的峰消失了。
摘要背景:卵巢癌最初对一线化疗有反应。不幸的是,它经常复发并对现有疗法产生耐药性,晚期和复发性卵巢癌的存活率低得令人无法接受。因此,我们假设通过将顺铂化疗与 SW IV-134(一种针对癌症的肽模拟物和细胞死亡诱导剂)相结合,有可能实现更持久的治疗反应。SW IV-134 是一种最近开发的小分子缀合物,将 sigma-2 配体与内在死亡途径激活剂 SMAC(第二线粒体胱天蛋白酶激活剂)的肽类似物(模拟物)连接起来。sigma-2 受体在卵巢癌中过度表达,缀合物的 sigma-2 配体部分促进癌症选择性。缀合物的效应部分有望与顺铂化疗产生协同作用,癌症选择性有望降低假定的脱靶毒性。方法:卵巢癌细胞系分别用顺铂、SW IV-134 和顺铂联合治疗。使用发光细胞活力测定法确定治疗效果。测量 Caspase-3/7、-8 和 -9 活性作为死亡途径激活的补充指标。研究了人类卵巢癌的同基因小鼠模型和患者来源的异种移植 (PDX) 模型对 SW IV-134 和顺铂单药治疗以及联合治疗的反应。以肿瘤生长率和存活率为主要指标来衡量治疗效果。在尸检时评估潜在的药物相关毒性。结果:与体外单一药物相比,联合治疗在多种细胞系中始终优于单一药物。使用发光和基于流式细胞术的检测系统确认了肿瘤细胞死亡的预期机制,例如 caspase 激活。联合治疗在卵巢癌的同基因和基于 PDX 的小鼠模型中均被证明具有优越性。最值得注意的是,在患者来源的卵巢癌异种移植模型中,联合治疗使所有研究动物的已建立肿瘤完全消退。结论:SW IV-134 与顺铂化疗联合使用是一种有前途的治疗选择,值得进一步进行临床前开发和评估,作为晚期卵巢癌女性的治疗方法。关键词:Sigma-2 受体、Sigma-2/SMAC 药物偶联物、顺铂、联合治疗、卵巢癌