金属铸造行业领导者一直利用有限的资源和合作伙伴关系,最大限度地提高对先进技术的投资,以解决竞争前的技术问题并创造新的铸件应用。1995 年 9 月,金属铸造行业公布了应对未来挑战的愿景。这一愿景需要扩大金属铸造技术的应用范围,并通过提高能源效率、降低成本和其他创新来扩大其对社会的实用性。超越 2000:美国金属铸造行业的愿景为金属铸造行业在 2020 年前提高竞争力、生产力和效率提供了框架。1995 年 10 月,该行业与美国能源部达成协议,由能源部长 Hazel O'Leary 和三个主要金属铸造技术协会的代表签署,以此确认其对本文件中概述的目标的承诺。
氧化物的钙热还原,103,107-8 钙热疗法,106 氧化钽的钙还原,105 碳脱氧,102 碳热疗法,101 铸件,如钛净成型技术,200-203,206;插图,201,202;表格,203 钛合金的夏比冲击试验,46,49;表,49 化学加工工业,钽在电解中的应用。111 氯碱工业 尺寸稳定阳极技术的商业化,3-4 盐水电解用石墨阳极技术的应用,4 铬,作为钛合金,137-38,145 冷变形,锆的应用,165 耐腐蚀性,ix 化学成分对高强度钛合金的影响,123-25 表面光洁度对高强度钛合金的影响,125-26 热机械对高强度钛合金的影响,125,130-143;插图,134,135,137,138;表格,132,133,136-140
航空航天制造/制造能源数值方法 AME320 空气动力学 AME410 增材制造 AME444 应用热力学 AME431 Num Meth 流体力学。 AME321 飞机性能 AME489A 制造技术 微型和纳米设备 AME430 中级热力学 AME463 使用 ANSYS 进行有限元分析 AME323 气体动力学 MSE414 铸件凝固 AME442A HVAC 系统设计 MSE350 MSE 中的数值方法(Python) AME324C 航空航天结构 SIE383 集成制造系统 AME442B 高级 HVAC 系统分析与设计 AME425 航空航天推进 SIE483 计算机集成制造 AME445 可再生能源 AME426 火箭推进 AME446 燃料电池设计 AME427 稳定/控制航空 AME480 核能简介 AME429 行星际任务设计 CE476 开发下一代锂离子电池 AME457 轨道力学和太空探索 MSE 424 应用太阳能材料 SIE452 空间系统工程 SIE456指导基金/航空系统
金属铸造行业的领导者一直通过合作伙伴关系利用有限的资源,最大限度地提高对先进技术的投资,以解决竞争前的技术问题并创造铸件的新应用。1995 年 9 月,金属铸造行业公布了应对未来挑战的愿景。这一愿景包括扩大金属铸造技术的应用范围,并通过提高能源效率、降低成本和其他创新来扩大其对社会的用途。《超越 2000:美国金属铸造行业的愿景》为金属铸造行业在 2020 年前提高竞争力、生产力和效率提供了框架。1995 年 10 月,美国能源部部长 Hazel O'Leary 和三大金属铸造技术协会的代表与美国能源部签署了协议,以此确认该行业对本文件中概述的目标的承诺。
氧化物的钙热还原,103,107-8 钙热疗法,106 氧化钽的钙还原,105 碳脱氧,102 碳热疗法,101 铸件,如钛净成型技术,200-203,206;插图,201,202;表格,203 钛合金的夏比冲击试验,46,49;表,49 化学加工工业,钽在电解中的应用。111 氯碱工业 尺寸稳定阳极技术的商业化,3-4 盐水电解用石墨阳极技术的应用,4 铬,作为钛合金,137-38,145 冷变形,锆的应用,165 耐腐蚀性,ix 化学成分对高强度钛合金的影响,123-25 表面光洁度对高强度钛合金的影响,125-26 热机械对高强度钛合金的影响,125,130-143;插图,134,135,137,138;表格,132,133,136-140
自由形式制造NASA Langley Research Center已成功开发了电子束自由式制造(EBF 3)工艺,这是一种快速的金属沉积工艺,可有效使用各种可焊接合金。EBF 3工艺可用于以层状方式构建复杂的,单位化的部分,尽管更直接的回报是用作制造过程,以添加详细信息,以从简化的铸件和宽容或板块制造的组件中添加详细信息。EBF 3工艺产生的结构金属部分具有与锻造产品形式相当的优势,并且已在迄今为止铝,钛和镍基合金上得到证明。EBF 3工艺将金属线原料引入了熔融池中,该池是在真空环境中使用聚焦电子束创建和维持的。在真空中操作可确保清洁的过程环境,并消除了对易于屏蔽气体的需求。
抽象的空气夹带缺陷是铸造过程中常见的缺陷类型,它将严重影响铸件的质量。数值模拟技术可以根据液体金属的进化定律预测铸造缺陷的发生,并在填充和固化过程中。空气夹带过程的模拟是数值模拟领域的热门和困难的问题。在金属填充过程中,空气夹带的进化定律和诱发气泡的跟踪仍然缺乏。因此,训练有素的气体的定量预测也是如此。在本文中,基于Inte Cast的数值模拟软件,本文提出了一种用于空气夹带搜索和跟踪的算法,该算法用于开发用于空气夹带的定量预测系统。通过模拟空气夹带的典型测试部分的模拟计算以及在填充过程中铸造的空气夹带缺陷的预测来验证系统的可行性。关键字:铸造,数值模拟,气体夹带缺陷,填充过程1。简介
功能强大的计算机和可靠的成像技术的引入对传统的基于辐射的无损检测 (NDT) 技术产生了重大影响。特别是,图像数字化提供了存储经济性、通信效率和更快的检查和评估速度。发达国家的 NDT 实验室在辐射检测数据的数字化方面正在迅速发展。使用图像增强系统、成像板和平板探测器的新成像技术提高了焊缝、铸件、锻造复合材料和混凝土中表面和内部缺陷的可视化能力,揭示了通过辐射技术准确评估此类缺陷的新潜力。本出版物介绍了一种经济实惠、低成本的数字工业放射学 (DIR) 荧光透视系统的设计、开发和优化。它提供了构建经济可行、易于组装的 DIR 系统的指南,为感兴趣的成员国(包括发展中成员国)提供获取 DIR 技术的渠道。
Kennametal 制造的精密材料包括铸件、粉末、涂层、消耗品和机加工零件,这些材料具有耐磨、耐腐蚀和耐磨损的特点。本文档中提供的信息仅供参考。选择和购买 Kennametal 产品完全由产品用户负责。用户必须对单个应用进行全面评估,包括遵守适用法律、法规和不侵权。Kennametal 无法了解或预测影响单个产品使用的众多变量,单个性能结果可能会有所不同。出于这些原因,Kennametal 不保证或担保本文档中的信息,也不承担任何责任。Kennametal 不保证此信息,并放弃与此信息有关的所有明示或暗示保证,包括但不限于所有适销性和特定用途适用性的暗示保证以及专利不侵权保证。肯纳金属公司对因使用本文档中提供的信息而可能产生的特殊、偶然、惩戒性或间接损害不负任何责任。
根据欧洲铝业协会 [1] 开展的一项研究,欧洲乘用车的铝含量将从 2022 年的 205 公斤增加到 2030 年的 256 公斤。对美国汽车也做出了非常相似的预测 [2] 。因此,内燃机相关铸件需求的下降将在很大程度上被电动汽车对新型铝基部件的需求所抵消,例如电机外壳、BEV 和 PHEV 电池外壳组件和不同的结构件。预计对压铸制造的汽车结构件的需求将从 2021 年的 820 万件大幅增加到 2030 年的 2500 万件 [3] 。所引用的研究一致认为,预计超过 50% 的铝基零件将通过压铸方法成型,特别是高压压铸 (HPDC)。这些研究并未考虑到巨型和千兆高压压铸的快速普及。因此,未来几年对 HPDC 零件的需求预计会比预测值高得多。