摘要:随着量子编程的发展,越来越多的量子编程语言被开发出来。因此,调试和测试量子程序变得越来越重要。虽然经典程序中的错误修复已经取得了长足的进步,但对量子程序的研究仍然不足。为此,本文对量子程序中的错误修复进行了全面的研究。我们从四种流行的量子编程语言(Qiskit、Cirq、Q#和ProjectQ)中收集并研究了96个现实世界中的错误及其修复。我们的研究表明,量子程序中的错误很大一部分(超过80%)是量子特有的错误,这需要在错误修复领域进行进一步的研究。我们还总结和扩展了量子程序中的错误模式,并细分了最关键的部分——与数学相关的错误,使其更适用于量子程序的研究。我们的研究结果总结了量子程序中错误的特点,并为研究测试和调试量子程序提供了基础。索引词——错误修复、量子软件测试、量子程序调试、实证研究
对量子计算的兴趣正在增长,随之而来的是软件平台开发量子程序的重要性。确保此类平台的正确性很重要,并且需要对它们通常遭受的错误进行透彻的了解。为了满足这一需求,本文介绍了对量子计算平台中错误的首次深入研究。我们从18个开源量子计算平台中收集并检查一组223个现实世界错误。我们的研究表明,这些错误的很大一部分(39.9%)是量子特异性的,呼吁采用专门的方法来预防和找到它们。这些错误分布在各个组件上,但是量子特异性错误通常会出现在代表,编译和优化量子编程摘要的组件中。许多量子特异性的错误通过意外的输出而不是行为不当的迹象,例如崩溃。最后,我们提出了复发性错误模式的层次结构,包括十种新颖的量子特异性模式。我们的发现不仅显示了量子计算平台中的重要性和普遍性错误,而且还可以帮助开发人员避免常见的错误和工具构建者,以应对预防,查找和修复这些错误的挑战。
摘要:手动装配操作容易受到人为错误的影响,而人为错误可能会降低最终产品的质量。本文展示了人为可靠性分析在实际制造环境中的应用,以确定手动装配错误发生的地点和原因。使用 SHERPA 和 HEART 技术进行人为可靠性分析。根据质量记录,选择了三项关键任务进行分析:(1)使用紧固件安装三种类型的支架,(2)使用缓冲环夹将数据线固定到装配结构上,以及(3)安装盖罩以保护入口。使用 SHERPA 识别的错误模式为:36 个动作错误、9 个选择错误、8 个信息检索错误和 6 个检查错误。根据 HEART,人为错误概率最高的是那些对几何相关错误敏感的装配部件(支架和缓冲环夹)。研究表明,具有感知吸引力的装配说明似乎最有可能减少错误并提高绩效。其他确定的行动领域包括改进检查流程和为工人提供更好的跟踪和更好的反馈。实施装配指导系统可能会提高工人的绩效并减少装配错误。
摘要 — 随着数字高程模型 (DEM) 的可用性和分辨率不断提高,对地球和行星表面高程的更大和更精细尺度的监测正在迅速发展。表面高程观测正被用于越来越多的领域,以研究地形属性及其随时间的变化,特别是在冰川学、水文学、火山学、地震学、林业和地貌学中。然而,DEM 通常包含大规模仪器噪声和不同的垂直精度,从而导致复杂的错误模式。在这里,我们提出了一个经过验证的统计工作流程来估计、建模和传播 DEM 中的不确定性。我们回顾了 DEM 准确度和精度分析的最新进展,并定义了一个概念框架来一致地解决这些问题。我们展示了如何通过量化高程测量的异方差来表征 DEM 精度,即随地形或传感器相关变量而变化的垂直精度,以及可能在多个空间尺度上发生的误差的空间相关性。随着高精度观测的日益普及,我们基于在稳定地形上获取的独立高程数据的工作流程几乎可以应用于地球上的任何地方。我们以地形坡度和冰川体积变化为例,说明了如何传播像素尺度和空间高程导数的不确定性。我们发现文献中大大低估了 DEM 中的不确定性,并主张新的 DEM 精度指标对于确保未来陆地高程评估的可靠性至关重要。
深层神经网络目前提供了整个灵长类动物腹视觉流中神经元反应模式的最佳定量模型。然而,作为腹侧流的开发模型,此类网络仍然令人难以置信,部分原因是它们是经过超级可见的方法培训的,需要比婴儿在发育过程中可以使用更多标签的方法。在这里,我们报告说,无监督学习的最新进展在很大程度上缩小了这一差距。我们发现,在多个腹侧视觉皮质皮质区域中,神经网络模型以深层的对比性嵌入方法获得了神经预测的准确性,该区域等于或超过了使用当今最佳监督方法得出的模型,并且这些神经网络模型的映射是神经层在整个通风流中的神经层。令人惊讶的是,我们发现这些方法即使仅接受从头部安装的相机收集的实际人类儿童发育数据进行训练,即使这些数据集很嘈杂且有限,也会产生类似的表示形式。我们还发现,半佩里的深层对比嵌入可以利用少量标记的示例来产生代表,具有大大改善人类行为的错误模式一致性。综上所述,这些结果说明了无监督学习的使用,以提供穆尔氏皮质脑系统的定量模型,并为灵长类动物感觉学习的生物学上合理的计算理论提供了强有力的候选者。
计算是技术专家的领域的日子早已一去不复返了。我们生活在一个计算技术(尤其是人工智能)渗透到我们日常生活的方方面面的世界,在各种情况下发挥着增强甚至取代人类决策的重要作用。人工智能技术可以通过处理错误模式来适应您孩子的理解水平;人工智能系统可以利用传感器输入的组合来选择和执行汽车的制动动作;具有人工智能功能的网络浏览器可以根据您过去对搜索的观察进行推理,以推荐新地点的新美食。人工智能的创新主要集中在“什么”和“如何”的问题上——例如,用于在网络搜索中查找模式的算法——没有充分关注可能的危害(例如隐私、偏见或操纵),也没有充分考虑这些系统运行的社会背景。在一定程度上,这是由科技行业的激励和力量推动的,在该行业中,更注重产品的重点往往会淹没对潜在危害和错误框架的更广泛的反思性担忧。 1 。但这种对“是什么”和“如何”的关注在很大程度上反映了计算机科学以工程和数学为重点的训练,这种训练强调工具的构建和计算概念的开发。由于这种严格的技术重点以及其在全球范围内的迅速应用,人工智能带来了一系列意想不到的社会技术问题,包括以种族或性别偏见的方式行事的算法、陷入延续不平等的反馈循环,或实现前所未有的行为监控,挑战自由民主社会的基本价值观。
抽象的连续集成和连续部署(CI/CD)管道是现代软件开发的关键组成部分,可以快速地提供可靠的应用程序。但是,确保CI/CD管道的无缝操作仍然是一个挑战,因为管理代码更改,依赖关系和不同测试环境的复杂性。人工智能(AI)的最新进步已引入了CI/CD工作流程中监测和诊断的创新方法,从而显着提高了它们的效率,可靠性和弹性。本评论探讨了监测和诊断CI/CD管道中使用的最先进的AI驱动技术。AI方法(例如机器学习(ML)算法,异常检测系统和预测分析)正在通过识别潜在瓶颈,预测建筑故障并优化资源分配来改变管道管理。关键开发包括AI驱动的日志分析,该分析可自动检测错误模式和根本原因识别,并适应性地管理管道配置以最大程度地减少故障率。本文还研究了自然语言处理(NLP)在分析开发人员反馈和改善团队之间的沟通中的作用。AI驱动的可观察性平台,该平台将来自多个管道阶段的数据集成以提供实时见解,以增强决策和减少停机时间的能力。挑战,例如将AI系统集成到现有的CI/CD框架中,处理大量数据,并确保在AI驱动的诊断中解释能力,以及建议的解决方案。领先技术公司的案例研究说明了AI对CI/CD管道性能的影响,展示了建筑成功率,部署速度和整体运营效率的可测量提高。本评论结束了结论,以识别新兴趋势,例如使用联合学习用于隐私诊断,以及用于自动代码修复的生成AI模型的集成。DOI: https://doi.org/10.54660/.IJMRGE.2024.5.1.1119-1130 Keywords: AI-Powered Monitoring, CI/CD Pipelines, Artificial Intelligence, Machine Learning, Anomaly Detection, Predictive Analytics, AI-Driven Diagnostics, NLP in CI/CD, Reinforcement Learning, Software Development Automation
单单元 DRAM 错误率的不断上升促使 DRAM 制造商采用片上纠错编码 (ECC),该编码完全在 DRAM 芯片内运行,以提高工厂产量。片上 ECC 功能及其对 DRAM 可靠性的影响被视为商业机密,因此只有制造商才知道片上 ECC 如何改变外部可见的可靠性特性。因此,片上 ECC 阻碍了第三方 DRAM 客户(例如测试工程师、实验研究人员),他们通常根据这些特性设计、测试和验证系统。为了让第三方准确了解片上 ECC 在错误校正过程中如何转换 DRAM 错误模式,我们引入了比特精确 ECC 恢复 (BEER),这是一种无需硬件工具、无需有关 DRAM 芯片或片上 ECC 机制的先决知识或无需访问 ECC 元数据(例如错误综合征、奇偶校验信息)即可确定完整 DRAM 片上 ECC 功能(即其奇偶校验矩阵)的新方法。BEER 利用了关键洞察,即使用精心设计的测试模式非侵入式地诱导数据保留错误会揭示特定 ECC 功能所独有的行为。我们使用 BEER 来识别来自三大 DRAM 制造商的 80 个带有片上 ECC 的真实 LPDDR4 DRAM 芯片的 ECC 功能。我们评估了 BEER 在模拟中的正确性和在真实系统上的性能,以表明 BEER 在各种片上 ECC 功能中都是有效且实用的。为了证明 BEER 的价值,我们提出并讨论了第三方可以使用 BEER 来改进其设计和测试实践的几种方法。作为一个具体的例子,我们介绍并评估了 BEEP,这是第一种错误分析方法,它使用已知的片上 ECC 功能来恢复导致可观察的后校正错误的不可观察的原始位错误的数量和位精确位置。1. 简介动态随机存取存储器 (DRAM) 是各种计算平台上系统主存储器的主要选择,因为它相对于其他存储器技术具有优惠的每位成本。DRAM 制造商通过提高设备代之间的原始存储密度来保持竞争优势。不幸的是,这些改进很大程度上依赖于工艺技术的扩展,这会导致严重的可靠性问题,从而降低工厂产量。DRAM 制造商传统上使用行/列备用等制造后修复技术来减少产量损失 [51]。然而,现代 DRAM 芯片技术的不断扩展需要更强大的错误缓解机制才能保持可行性,因为在较小的工艺技术节点上,随机单比特错误越来越频繁 [39,76,89,99,109,119,120,124,127,129,133,160]。因此,DRAM 制造商已经开始使用片上纠错编码(片上 ECC),它可以悄悄地纠正单比特错误