观点 个性化癌症免疫疗法的发展代表了癌症治疗的重大进步,旨在根据个体肿瘤的独特基因组成量身定制治疗方案。肿瘤特异性抗原 (TSA) 不会在正常细胞中表达。TSA 是癌症免疫疗法和癌症疫苗的合适选择。肿瘤细胞含有控制细胞生长的基因和其他基因的突变。阻止修复细胞分裂中脱氧核糖核酸 (DNA) 错误的基因突变,即所谓的错配修复,有可能在肿瘤细胞表面表达新抗原并用于个性化癌症免疫疗法 [1] 。根据我们的经验和现有数据,基于新抗原的疫苗代表了一种潜在的新型癌症免疫疗法 [2] 。然而,尽管它们前景光明,但仍存在一些挑战和限制阻碍其广泛实施和有效性。这些挑战可分为新抗原鉴定、免疫原性、制造复杂性和肿瘤的生物环境。开发个性化癌症疫苗的主要挑战之一是鉴定合适的新抗原。新抗原是源自肿瘤 DNA 突变的独特肿瘤特异性抗原。识别这些新抗原非常复杂,因为它需要对肿瘤进行全面的基因组测序,并识别出能够引发强烈免疫反应的突变。研究表明,患者之间肿瘤突变负担的差异会显著影响新抗原的可用性,从而限制有效疫苗开发的潜力 [3,4] 。此外,肿瘤的高度异质性使免疫原性新抗原的识别变得复杂,因为不同的肿瘤细胞可能表达不同的突变,因此需要高度个性化的疫苗设计方法 [5,6] 。免疫原性是影响个性化癌症疫苗功效的另一个关键因素。即使成功识别出新抗原,其激发强烈免疫反应的能力也可能有限。免疫抑制性肿瘤微环境等因素可以抑制 T 细胞活化和增殖,对实现足够的免疫原性构成重大障碍 [7,8] 。此外,免疫系统的耐受机制可能导致无法将新抗原识别为外来物,从而进一步削弱产生强大免疫反应的可能性 [9,10] 。这种现象在突变负担较低的肿瘤中尤为明显,其中
摘要 Prime editor 在疾病建模和再生医学方面具有巨大潜力,包括针对肌肉萎缩症杜氏肌营养不良症 (DMD) 的研究。然而,Prime 编辑系统的庞大规模和多组分性质带来了巨大的生产和交付问题。本文,我们报告将优化的全长 Prime 编辑构建体包装在腺病毒载体颗粒 (AdVP) 中,可以在人类成肌细胞(即成肌细胞和间充质干细胞)中安装精确的 DMD 编辑(分别高达 80% 和 64%)。AdVP 转导确定了优化的 Prime 编辑试剂,这些试剂能够恢复约 14% 患者基因型的 DMD 阅读框架,并恢复未选择的 DMD 肌细胞群中的肌营养不良蛋白合成和肌营养不良蛋白-β-肌营养不良聚糖连接。 AdVP 同样适用于纠正 DMD iPSC 衍生的心肌细胞,并通过靶向外显子 51 缺失提供针对 DMD 修复的双引物编辑器。此外,通过利用不依赖细胞周期的 AdVP 转导过程,我们报告 2 组分和 3 组分引物编辑模式在细胞周期中最活跃,而不是在有丝分裂后细胞中。最后,我们确定将 AdVP 转导与无缝引物编辑相结合可以通过连续的递送轮次堆叠染色体编辑。总之,AdVP 允许对高级引物编辑系统进行多种研究,而不管其大小和组分数量如何,这应该有助于它们的筛选和应用。引言由序列定制的向导 RNA (gRNA) 和 Cas9 内切酶组成的可编程核酸酶是基因组编辑的有力工具。然而,双链 DNA 断裂 (DSB) 的普遍修复是通过容易出错的末端连接过程进行的,这赋予了基于核酸酶的基因组编辑内在的高诱变特性。相比之下,prime 编辑允许在特定基因组序列上安装任何单个碱基对变化和精确的小插入或删除 (indel),而不会形成 DSB (1)。通常,prime 编辑复合物包含与切口 Cas9 变体 (prime editor) 融合的工程逆转录酶 (RT) 和 3' 端延伸的 gRNA,称为 prime 编辑向导 RNA (pegRNA)。pegRNA 分别通过其间隔物和 RT 模板部分指示靶位点选择和感兴趣的编辑。在靶位点切口后,释放的单链 DNA 与 pegRNA 的引物结合位点 (PBS) 退火,引发 RT 介导的 RNA 模板复制为互补 DNA,在基因组位点杂交、瓣切除和 DNA 修复或复制后,导致靶向染色体编辑 (1)。prime 编辑有两种主要模式,即 PE2 和 PE3 (1)。前者的 2 组分系统仅依赖于一个引物编辑蛋白(例如 PE2)和一个 pegRNA,而后者的 3 组分系统则需要一个补充的常规 gRNA。在 PE3 中,gRNA 引导的未编辑 DNA 链切口促使其被编辑链取代,这通常会导致同源双链 DNA 编辑频率更高,尽管同时增加了插入/缺失副产物 (1)。最近,基于将 prime editor 与双 pegRNA 一起递送的多重 prime 编辑正在进一步扩大 DSB 独立的基因组编辑程序的范围。事实上,在这种情况下,一对 prime 编辑复合物协同作用以安装基因组插入、删除和/或替换,其大小远远大于通过 PE2 和 PE3 策略实现的插入、删除和/或替换 (2-7)。由于其巨大的潜力和多功能性,prime 编辑系统正在快速发展,包括改进的 prime 编辑蛋白和 pegRNA,例如 PEmax (8) 和工程 pegRNA (epegRNA) 架构 (9,10)。PEmax 构建体在其 Cas9 切口酶和 RT 部分分别整合了特定突变和密码子优化,有助于增强 prime 编辑活性 (8)。 epegRNA 具有以结构化 RNA 假结形式延伸的 3' 端(例如 tevopreQ1),可保护它们免受核酸外切降解(9,10)。尽管取得了这些重要进展,但 Prime 编辑组件的庞大尺寸造成了严重的生产和交付瓶颈,阻碍了它们最有效的测试和应用。旨在改善交付瓶颈的方法包括将 Prime 编辑器构建体拆分为亚基,这些亚基在进入细胞后原位组装束缚或未束缚的 Cas9 切口酶和 RT 部分(11-20)。此外,其他辅助方法允许通过以下方式富集 Prime 编辑的细胞级分; (i) 使用替代报告基因或药物系统分离在靶基因和可选择标记基因上共同编辑的细胞 (21-23),或 (ii) 通过共同递送细胞 DNA 错配修复途径的显性负因子来干扰编辑的 DNA 链去除 (8,10)。尽管适用于特定环境,但这些主要编辑系统的多组分特性使其设计复杂,并且其更广泛的应用具有挑战性。PEmax 构建体分别在其 Cas9 切口酶和 RT 部分中整合了特定突变和密码子优化,这有助于增强 prime editing 活性 (8)。epegRNA 具有以结构化 RNA 假结 (例如 tevopreQ1) 形式延伸的 3' 端,可保护它们免受核酸外切降解 (9,10)。尽管取得了这些重要进展,但是 prime editing 组件的尺寸较大,造成了严重的生产和交付瓶颈,阻碍了其最有效的测试和应用。旨在改善交付瓶颈的方法包括将 prime editor 构建体拆分为亚基,当进入细胞时,亚基就地组装束缚或不受束缚的 Cas9 切口酶和 RT 部分 (11-20)。此外,其他辅助方法允许通过以下方式富集 prime 编辑的细胞级分; (i) 使用替代报告基因或药物系统分离在靶基因和可选择标记基因上共同编辑的细胞 (21-23),或 (ii) 通过共同递送细胞 DNA 错配修复途径的显性负因子来干扰编辑的 DNA 链去除 (8,10)。尽管适用于特定环境,但这些主要编辑系统的多组分特性使其设计复杂,并且其更广泛的应用具有挑战性。PEmax 构建体分别在其 Cas9 切口酶和 RT 部分中整合了特定突变和密码子优化,这有助于增强 prime editing 活性 (8)。epegRNA 具有以结构化 RNA 假结 (例如 tevopreQ1) 形式延伸的 3' 端,可保护它们免受核酸外切降解 (9,10)。尽管取得了这些重要进展,但是 prime editing 组件的尺寸较大,造成了严重的生产和交付瓶颈,阻碍了其最有效的测试和应用。旨在改善交付瓶颈的方法包括将 prime editor 构建体拆分为亚基,当进入细胞时,亚基就地组装束缚或不受束缚的 Cas9 切口酶和 RT 部分 (11-20)。此外,其他辅助方法允许通过以下方式富集 prime 编辑的细胞级分; (i) 使用替代报告基因或药物系统分离在靶基因和可选择标记基因上共同编辑的细胞 (21-23),或 (ii) 通过共同递送细胞 DNA 错配修复途径的显性负因子来干扰编辑的 DNA 链去除 (8,10)。尽管适用于特定环境,但这些主要编辑系统的多组分特性使其设计复杂,并且其更广泛的应用具有挑战性。
以下是 Keytruda 的 FDA 适应症和 NCCN 概要用途。乳腺癌 Keytruda 被 FDA 批准与化疗联合用于治疗局部复发、不可切除或转移性三阴性乳腺癌 (TNBC) 患者,这些患者的肿瘤表达 PD-L1 综合阳性评分 (CPS) ≥10(经 FDA 批准的检测确定)。Keytruda 还被批准与化疗联合用于新辅助治疗,然后在手术后的辅助治疗中单药使用。宫颈癌 Keytruda 被 FDA 批准用于治疗复发性或转移性宫颈癌患者,这些患者的病情在化疗期间或化疗后出现进展,这些患者的肿瘤表达 PD-L1 综合阳性评分 (CPS) ≥1(经 FDA 批准的检测确定)。 Keytruda 还可与化疗联合使用(无论是否联合贝伐单抗),用于治疗肿瘤表达 PD-L1 CPS≥1 的持续性、复发性或转移性宫颈癌患者。结直肠癌结直肠癌是指源自大肠(结肠)或直肠的恶性肿瘤。结直肠癌一词不包括肛门癌。Keytruda 已获 FDA 批准作为微卫星不稳定性高或错配修复缺陷型结直肠癌(MSIH/dMMR)患者的一线治疗药物。NCCN 药物和生物制剂汇编以及 NCCN 结肠癌和直肠癌临床实践指南(CPG)列出了对于无法切除的异时性转移或无法切除的晚期或转移性结直肠癌患者的 Keytruda 的标外使用。这些建议基于 2A 类证据和统一共识。 NCCN 专家组建议使用 Keytruda 或 nivolumab 作为转移性 MMR 缺陷型结直肠癌患者的二线或三线治疗方案。使用这两种药物之一后病情进展的患者不应接受另一种药物。皮肤鳞状细胞癌 (cSCC) 基底细胞癌和皮肤鳞状细胞癌统称为非黑色素瘤皮肤癌 (NMSC) 或角质形成细胞癌。Keytruda 已获得 FDA 批准,用于治疗无法通过手术或放射治疗治愈的局部晚期、复发性或转移性皮肤鳞状细胞癌患者。子宫内膜癌
摘要 背景 原发灶不明的癌症 (CUP) 是一组异质性转移性癌症,其原发组织来源 (TOO) 不确定。大多数 CUP 患者的治疗选择有限,生存结果较差。免疫检查点抑制剂 (ICI) 对某些 CUP 患者有效,但最佳预测生物标志物尚不清楚。因此,我们评估了 CUP 患者的免疫和基因组生物标志物以及预测的 TOO,包括接受 ICI 治疗的一部分患者。方法 对 CUP 患者进行基因表达谱 (GEP) 和 DNA 面板测序。使用 NanoString 探索免疫和基质相关基因表达,包括与其他实体恶性肿瘤中的免疫治疗反应 (IR) 相关的基因。根据食品和药物管理局批准的适应症分配 ICI 反应性癌症类型,并根据基因组学知情病理学审查怀疑检测到潜在原发性肿瘤或 TOO。还评估了肿瘤突变负荷 (TMB) 和基因突变。结果 共纳入 219 名 CUP 患者,其中 215 名在之前的研究中接受了 TOO 评估,大多数 (163) 接受了 RNA 和 DNA 测试。在 GEP 分析病例中,33% (59/175) 具有高 IR 基因表达评分。在 DNA 测序病例中,16% (32/203) 具有高 TMB (>10 个突变/Mb),其中两例患有错配修复缺陷。TMB 和 IR 评分之间相关性较低 (R=0.26, p<0.001)。在 110 名患有潜在原发性或疑似 TOO 的 CUP 中,47% (52/110) 属于 ICI 反应性癌症类型。超过一半的 CUP 至少有一个可能预测 ICI 反应的特征(高 IR 评分、高 TMB、ICI 反应性癌症类型)。在接受 ICI 治疗的 CUP 患者中,8/28 (29%) 有反应(2 例完全反应,6 例部分反应)。在无反应患者中,9 例病情稳定,11 例病情进展。所有有反应的患者均具有高 IR 评分(7/8)和/或高 TMB(3/8),而大多数(5/8)属于 ICI 反应性癌症类型。这些特征在无反应患者中出现的频率较低,且大多出现在病情稳定的患者中。
结直肠癌(CRC)是全球第三大癌症,是最常见的胃肠道恶性肿瘤,也是癌症死亡的第二常见原因。在2020年,估计有超过190万新的结直肠癌病例和930,000多人死亡发生[1]。观察到发病率和死亡率的较大地理差异。在欧洲,澳大利亚和新西兰,发病率最高,而东欧的死亡率最高。到2040年,大肠癌的负担将增加到每年320万例新病例(增加63%)和每年160万人死亡(增加73%)[2]。尽管CRC的发生率稳步上升,但总体5年生存率目前为50%,在过去30年中,从1971 - 75年的20%中有所提高,大概是由于早期诊断,足够的分期和有效的多模式治疗[2-6]。尽管结肠和直肠癌的疾病似乎是明显的,但在死亡率统计中区分它们存在公认的困难。76%的结直肠癌患者被诊断出65至85岁,但由于采用西方饮食和生活方式,就会影响发展中国家的年龄较小[1,7]。男性直肠癌的发生率更高,女性的结肠癌发生率更高。在结肠内约有50%的癌症发生在左侧,右侧25%。在4%至5%的病例中,有同步病变,2%至3%的发生癌。零星结直肠癌占病例的近70%。直肠(37%)和乙状结肠(27%)继续是癌的主要部位,与p53基因突变的发病率更高,可能是因为造成癌变的时间更长[8]。CRC通常始于粘膜上皮细胞的非癌性增殖。这些称为息肉的生长逐渐生长10至20年,然后成为癌变(腺瘤 - 癌序列)[9]。,所有腺瘤中只有大约10%的腺瘤发展为侵入性癌症,尽管随着息肉的增长,风险会增加。由这种息肉引起的侵入性癌症是腺癌,占所有CRC的96%。将近75%属于一个中等分化的组织学类别(Broder的2或3级),而分化不佳(Broder的4级)代表了5%的少数族裔[10]。只有5%与遗传条件有关,例如Lynch综合征或家族性腺瘤性息肉病(FAP),其特征在于DNA错配修复基因和微卫星不稳定性,其中20%至30%的病例具有没有相关或已知的种系突变的家族性格[11]。这是通过以下事实证实的。
8:30 - 9:00 am 注册和咖啡/茶 9:00 - 9:10 am 欢迎致辞(吴晓华,斯克里普斯研究中心) 9:10 - 10:25 am 报告环节 1:DNA 修复和基因组稳定性(环节主席:Rémi Buisson,UCI) 9:10 - 9:25 am Tony Fernandez 博士(希望之城沈丙辉实验室)DNA2 和 MSH2 活动共同去除化学稳定的 G4 以实现高效端粒复制 9:25 - 9:40 am Pedro Ortega 博士(Rémi Buisson 实验室,加州大学欧文分校) 复制灾难期间的叉断裂机制 9:40 - 9:55 am Christine Joyce (Chris Richardson 实验室,加州大学圣塔芭芭拉分校) FANCD2-FANCI 异二聚体在双链断裂后调节 DNA 修复活性和细胞周期进程 9:55 - 10:10 am Ting Zhao (Yinsheng Wang 实验室,加州大学欧文分校) N2-烷基-Dg 结合蛋白的鉴定和功能特性 10:10 - 10:25 am Nadejda Butova (Irene Chiolo 实验室,南加州大学) Ulp1:异染色质修复的时钟 10:30 – 11:00 am 海报闪电演讲 11:10 – 12:45 pm 海报会议 12:45 – 1:30 pm 午餐 1:30 – 2:45 pm 演讲第 2 场:基因组学和基因编辑(会议主席:Shannon Miller,斯克里普斯研究中心) 下午 1:30 – 1:45 Peter Chovanec 博士(加州大学洛杉矶分校 Yi Yin 实验室)面向体内自发基因组不稳定性事件的单细胞图谱 下午 1:45 – 2:00 Xiaoyu (Lydia) Chen(加州大学欧文分校 Audrone Lapinaite 实验室)从结构到功能:脱氨酶结构域二聚化和 Cas9 相互作用如何提高 ABE8e 中的碱基编辑效率 下午 2:00 – 2:15 Mallory Evanoff 博士(加州大学圣地亚哥分校 Alexis Komor 实验室)定向进化逆转分析产生最小突变的腺嘌呤碱基编辑器变体,并提高效率和精度。 2:15 – 2:30 pm Seanmory Sothy(Linlin Zhao 实验室,UCR)基于质谱的碱基切除修复中间体定量 2:30 – 2:45 pm Shuvro P. Nandi 博士(Ludmil B. Alexandrov 实验室,UCSD)UDSeq:一种用于精确全基因组识别体细胞突变的通用双链测序。 2:45 – 3:15 pm 咖啡休息 3:15 – 4:30 pm 讲座环节 3:染色体重排和癌症治疗(环节主席:Irene Chiolo,南加州大学) 3:15 – 3:30 pm Sameer Shah 博士(Xiaohua Wu 实验室,斯克里普斯研究中心) 53BP1 缺陷导致通过断裂诱导复制 (BIR) 的过度重组 3:30 – 3:45 pm Kaela Makins (Jeremy Stark 实验室,希望之城) 定义染色体断裂修复过程中 DNA-Pkcs 和 RIF1-53BP1 之间的相互作用 3:45 – 4:00 pm Megha Raghunathan (Svasti Haricharan 实验室,SDSU) 错配修复基因特异性对乳腺肿瘤形成、进展和基因组不稳定性的影响 4:00 – 4:15 pm Shuangshuang Xie 博士(加州理工学院 Dan Semlow 实验室)微生物组衍生的 Colibactin 基因毒素可激活 cGAS-STING 依赖的促炎症信号传导 4:15 – 4:30 pm Ya Allen Cui 博士(加州大学魏李实验室)串联重复变异与人类健康和疾病的关系 4:30 – 4:45 pm 海报奖颁奖(斯克里普斯研究中心 Katja Lamia)闭幕词 5:00 – 6:30 pm 晚餐 (与教授见面:职业发展) 6:30 pm 研讨会结束