Loading...
机构名称:
¥ 2.0

摘要 Prime editor 在疾病建模和再生医学方面具有巨大潜力,包括针对肌肉萎缩症杜氏肌营养不良症 (DMD) 的研究。然而,Prime 编辑系统的庞大规模和多组分性质带来了巨大的生产和交付问题。本文,我们报告将优化的全长 Prime 编辑构建体包装在腺病毒载体颗粒 (AdVP) 中,可以在人类成肌细胞(即成肌细胞和间充质干细胞)中安装精确的 DMD 编辑(分别高达 80% 和 64%)。AdVP 转导确定了优化的 Prime 编辑试剂,这些试剂能够恢复约 14% 患者基因型的 DMD 阅读框架,并恢复未选择的 DMD 肌细胞群中的肌营养不良蛋白合成和肌营养不良蛋白-β-肌营养不良聚糖连接。 AdVP 同样适用于纠正 DMD iPSC 衍生的心肌细胞,并通过靶向外显子 51 缺失提供针对 DMD 修复的双引物编辑器。此外,通过利用不依赖细胞周期的 AdVP 转导过程,我们报告 2 组分和 3 组分引物编辑模式在细胞周期中最活跃,而不是在有丝分裂后细胞中。最后,我们确定将 AdVP 转导与无缝引物编辑相结合可以通过连续的递送轮次堆叠染色体编辑。总之,AdVP 允许对高级引物编辑系统进行多种研究,而不管其大小和组分数量如何,这应该有助于它们的筛选和应用。引言由序列定制的向导 RNA (gRNA) 和 Cas9 内切酶组成的可编程核酸酶是基因组编辑的有力工具。然而,双链 DNA 断裂 (DSB) 的普遍修复是通过容易出错的末端连接过程进行的,这赋予了基于核酸酶的基因组编辑内在的高诱变特性。相比之下,prime 编辑允许在特定基因组序列上安装任何单个碱基对变化和精确的小插入或删除 (indel),而不会形成 DSB (1)。通常,prime 编辑复合物包含与切口 Cas9 变体 (prime editor) 融合的工程逆转录酶 (RT) 和 3' 端延伸的 gRNA,称为 prime 编辑向导 RNA (pegRNA)。pegRNA 分别通过其间隔物和 RT 模板部分指示靶位点选择和感兴趣的编辑。在靶位点切口后,释放的单链 DNA 与 pegRNA 的引物结合位点 (PBS) 退火,引发 RT 介导的 RNA 模板复制为互补 DNA,在基因组位点杂交、瓣切除和 DNA 修复或复制后,导致靶向染色体编辑 (1)。prime 编辑有两种主要模式,即 PE2 和 PE3 (1)。前者的 2 组分系统仅依赖于一个引物编辑蛋白(例如 PE2)和一个 pegRNA,而后者的 3 组分系统则需要一个补充的常规 gRNA。在 PE3 中,gRNA 引导的未编辑 DNA 链切口促使其被编辑链取代,这通常会导致同源双链 DNA 编辑频率更高,尽管同时增加了插入/缺失副产物 (1)。最近,基于将 prime editor 与双 pegRNA 一起递送的多重 prime 编辑正在进一步扩大 DSB 独立的基因组编辑程序的范围。事实上,在这种情况下,一对 prime 编辑复合物协同作用以安装基因组插入、删除和/或替换,其大小​​远远大于通过 PE2 和 PE3 策略实现的插入、删除和/或替换 (2-7)。由于其巨大的潜力和多功能性,prime 编辑系统正在快速发展,包括改进的 prime 编辑蛋白和 pegRNA,例如 PEmax (8) 和工程 pegRNA (epegRNA) 架构 (9,10)。PEmax 构建体在其 Cas9 切口酶和 RT 部分分别整合了特定突变和密码子优化,有助于增强 prime 编辑活性 (8)。 epegRNA 具有以结构化 RNA 假结形式延伸的 3' 端(例如 tevopreQ1),可保护它们免受核酸外切降解(9,10)。尽管取得了这些重要进展,但 Prime 编辑组件的庞大尺寸造成了严重的生产和交付瓶颈,阻碍了它们最有效的测试和应用。旨在改善交付瓶颈的方法包括将 Prime 编辑器构建体拆分为亚基,这些亚基在进入细胞后原位组装束缚或未束缚的 Cas9 切口酶和 RT 部分(11-20)。此外,其他辅助方法允许通过以下方式富集 Prime 编辑的细胞级分; (i) 使用替代报告基因或药物系统分离在靶基因和可选择标记基因上共同编辑的细胞 (21-23),或 (ii) 通过共同递送细胞 DNA 错配修复途径的显性负因子来干扰编辑的 DNA 链去除 (8,10)。尽管适用于特定环境,但这些主要编辑系统的多组分特性使其设计复杂,并且其更广泛的应用具有挑战性。PEmax 构建体分别在其 Cas9 切口酶和 RT 部分中整合了特定突变和密码子优化,这有助于增强 prime editing 活性 (8)。epegRNA 具有以结构化 RNA 假结 (例如 tevopreQ1) 形式延伸的 3' 端,可保护它们免受核酸外切降解 (9,10)。尽管取得了这些重要进展,但是 prime editing 组件的尺寸较大,造成了严重的生产和交付瓶颈,阻碍了其最有效的测试和应用。旨在改善交付瓶颈的方法包括将 prime editor 构建体拆分为亚基,当进入细胞时,亚基就地组装束缚或不受束缚的 Cas9 切口酶和 RT 部分 (11-20)。此外,其他辅助方法允许通过以下方式富集 prime 编辑的细胞级分; (i) 使用替代报告基因或药物系统分离在靶基因和可选择标记基因上共同编辑的细胞 (21-23),或 (ii) 通过共同递送细胞 DNA 错配修复途径的显性负因子来干扰编辑的 DNA 链去除 (8,10)。尽管适用于特定环境,但这些主要编辑系统的多组分特性使其设计复杂,并且其更广泛的应用具有挑战性。PEmax 构建体分别在其 Cas9 切口酶和 RT 部分中整合了特定突变和密码子优化,这有助于增强 prime editing 活性 (8)。epegRNA 具有以结构化 RNA 假结 (例如 tevopreQ1) 形式延伸的 3' 端,可保护它们免受核酸外切降解 (9,10)。尽管取得了这些重要进展,但是 prime editing 组件的尺寸较大,造成了严重的生产和交付瓶颈,阻碍了其最有效的测试和应用。旨在改善交付瓶颈的方法包括将 prime editor 构建体拆分为亚基,当进入细胞时,亚基就地组装束缚或不受束缚的 Cas9 切口酶和 RT 部分 (11-20)。此外,其他辅助方法允许通过以下方式富集 prime 编辑的细胞级分; (i) 使用替代报告基因或药物系统分离在靶基因和可选择标记基因上共同编辑的细胞 (21-23),或 (ii) 通过共同递送细胞 DNA 错配修复途径的显性负因子来干扰编辑的 DNA 链去除 (8,10)。尽管适用于特定环境,但这些主要编辑系统的多组分特性使其设计复杂,并且其更广泛的应用具有挑战性。

基于 CRISPR 切口酶的软基因组编辑

基于 CRISPR 切口酶的软基因组编辑PDF文件第1页

基于 CRISPR 切口酶的软基因组编辑PDF文件第2页

基于 CRISPR 切口酶的软基因组编辑PDF文件第3页

基于 CRISPR 切口酶的软基因组编辑PDF文件第4页

基于 CRISPR 切口酶的软基因组编辑PDF文件第5页

相关文件推荐

2025 年
¥2.0
1900 年
¥1.0