我向作者 P. Kannaiah 博士、K.L. 教授表示祝贺。S.V.U. 的 Narayana 和 K. Venkata Reddy 先生。蒂鲁帕蒂工程学院出版了这本关于“机械制图”的书。本书首先介绍了工程制图的基础知识,然后作者系统地介绍了机械制图。在我看来,这是一种极好的方法。这本书对机械工程专业文凭、学位和 AMIE 级别的学生来说都是一本宝贵的书。P. Kannaiah 博士拥有约二十五年的丰富教学经验,这些经验得到了充分利用,正确地反映了对该主题的处理和呈现。K.L. 教授机械工程教授 Narayana 和车间主管 K. Venkata Reddy 先生明智地联手,从他们丰富的经验中提供有用的插图,这一独特之处是本书的一大财富,其他书籍可能没有这样的机会。任何绘图书都必须遵循 BIS 标准。作者在这方面做得非常细致。此外,本书毫无遗漏地涵盖了印度各大学的教学大纲。学习绘图原理并将其应用于工业实践对任何学生来说都是必不可少的,本书是工程专业学生的宝贵指南。它也是工业设计和绘图部门的参考书。本书几乎是机械绘图的完整手册。本书是学生和专业人士学习计算机图形学的基础,计算机图形学是现代的必备课程。我相信工程专业的学生会发现这本书对他们非常有用。
图 3 掺杂调控 vdW 异质结理论研究典型成果( a )结构优化后的 C 、 N 空位及 B 、 C 、 P 、 S 原子掺杂 g-C 3 N 4 /WSe 2 异质结 的俯视图 [56] ;( b )图( a )中六种结构的能带结构图 [56] ;( c )掺杂的异质结模型图、本征 graphene/MoS 2 异质结的能带结 构及 F 掺杂 graphene/ MoS 2 异质结的能带结构 [57] ;( d ) Nb 掺杂 MoS 2 原子结构的俯视图和侧视图以及 MoS 2 和 Nb 掺杂
Figure 12.1540-MeV 209Bi ion irradiation 1.7 × 10 11 ions/cm 2 TEM images of AlGaN/GaN HEMT devices: (a) Gate region cross-section; (b) The orbital image of the heterojunction region shown in Figure (a); (c) The image shown in Figure (a) has a depth of approximately 500 nm; (d) Traces formed at the drain; (e) As shown in Figure (d), the trajectory appears at a depth of ap- proximately 500 nm [48] 图 12.1540-MeV 209Bi 离子辐照 1.7 × 10 11 ions/cm 2 的 AlGaN/GaN HEMT 器件的 TEM 图像: (a) 栅极区域截面; (b) 图 (a) 所示异质结区域轨道图 像; (c) 图 (a) 所示深度约 500 nm 图像; (d) 在漏极形成的痕迹; (e) 如图 (d) 所示,轨迹出现在深度约 500 nm 处 [48]
图 2-2 GAN 发展脉络 ...................................................................................................................... 3
1。混凝土基地:4英寸(100毫米)高,(埃文斯顿:Sheridan Rd的东部6英寸)加固,边缘倒角。,除非另有说明,否则将底部不超过3英寸(75毫米)的最大设备尺寸。2。放置并安全的锚固设备。使用受支持的设备制造商的设置图,模板,图表,说明和指示,并提供了要嵌入的物品。3。根据锚螺栓制造商的书面说明安装锚螺栓。4。使用3000-PSI(20.7-MPA)28天压缩强度混凝土和钢筋,如Disecon 03部分所示。
抽象聚丙烯是世界上顶级商品聚合物之一,也广泛用于纺织业。然而,它的非极性性质和部分结晶的结构显着使植物型的工业着色过程变得复杂。当前,由聚丙烯制成或具有很大比例的聚丙烯制成的纺织品在非常严峻的条件下染色,包括使用高压和温度,这使得该过程的能量密集型。本研究提出了三步的着色剂的合成,能够粘附在没有严重消耗能量条件的情况下的合成聚丙烯纱线上。这可以通过使用三甲氧基 - 尼硅烷封装有机色素,通过用三甲基甲基甲基丙烯酸甲酯修饰二氧化硅壳来引入表面双键,并最终使用硫醇烯 - 硫代烯烯 - 硫代烯烯型化学方法。我们通过在逐步合成这些新染色剂的逐步指南后,在周围条件下在一个简单的过程中在一个简单的过程中染色的聚丙烯纱来证明这种方法的适用性。最后,可视化纱线的成功染色,并讨论了其实用性。
探索人脑的复杂结构对于理解大脑功能和诊断脑部疾病至关重要。得益于神经成像技术的进步,一种新方法已经出现,该方法涉及将人脑建模为图结构模式,其中不同的大脑区域表示为节点,这些区域之间的功能关系表示为边。此外,图神经网络(GNN)在挖掘图结构数据方面表现出显着优势。开发 GNN 来学习脑图表征以进行脑部疾病分析最近引起了越来越多的关注。然而,缺乏系统的调查工作来总结该领域的当前研究方法。在本文中,我们旨在通过回顾利用 GNN 的脑图学习工作来弥补这一空白。我们首先介绍基于常见神经成像数据的脑图建模过程。随后,我们根据生成的脑图类型和目标研究问题对当前的作品进行系统分类。为了让更多感兴趣的研究人员能够接触到这项研究,我们概述了代表性方法和常用数据集,以及它们的实现来源。最后,我们介绍了对未来研究方向的见解。本次调查的存储库位于 https://github.com/XuexiongLuoMQ/Awesome-Brain-Graph-Learning-with-GNNs。