探索人脑的复杂结构对于理解大脑功能和诊断脑部疾病至关重要。得益于神经成像技术的进步,一种新方法已经出现,该方法涉及将人脑建模为图结构模式,其中不同的大脑区域表示为节点,这些区域之间的功能关系表示为边。此外,图神经网络(GNN)在挖掘图结构数据方面表现出显着优势。开发 GNN 来学习脑图表征以进行脑部疾病分析最近引起了越来越多的关注。然而,缺乏系统的调查工作来总结该领域的当前研究方法。在本文中,我们旨在通过回顾利用 GNN 的脑图学习工作来弥补这一空白。我们首先介绍基于常见神经成像数据的脑图建模过程。随后,我们根据生成的脑图类型和目标研究问题对当前的作品进行系统分类。为了让更多感兴趣的研究人员能够接触到这项研究,我们概述了代表性方法和常用数据集,以及它们的实现来源。最后,我们介绍了对未来研究方向的见解。本次调查的存储库位于 https://github.com/XuexiongLuoMQ/Awesome-Brain-Graph-Learning-with-GNNs。