3.2.2 表面五金件。表面五金件(不包括 VIII 尺寸机柜上的密码锁、手提把手和锁盘保护器)应为缎面阳极氧化铝或不锈钢,或缎面铬钢或压铸锌、黄铜或青铜。单个装置上使用的所有五金件的外露表面应在所用基材和保护涂层的范围内进行加工以相互匹配。所有表面五金件的外露表面均不得有穿透保护镀层或阳极氧化层的锋利边缘、毛刺、凹坑、缺口或划痕。3.2.3 饰面材料。3.2.3.1 瓷漆和清漆。机柜的最终涂层应为粉末涂层、环氧树脂、丙烯酸、清漆或聚氨酯,厚度为 3.0 密耳。颜色应符合 3.2.4 中的规定。3.2.3.2 镀铬。镀铬应符合 QQ-C-320 的 I 级 II 型要求。3.2.3.3 镀镉。镀镉应符合 QQ-P-416 的 I 级要求。3.2.3.4 镀锌。镀锌应符合 ASTM B633 的 I 型要求,镀层厚度等级为 Fe/Zn 8。3.2.4 表面处理颜色。表面处理颜色应符合 FED-STD-595 规定的以下颜色(见 6.2)。灰色 - 颜色编号 26134 黑色 - 颜色编号 27040 羊皮纸 - 颜色编号 27769(标准颜色的样板可从美国总务管理局联邦供应服务处华盛顿特区 20407 的业务服务中心或最近的地区办事处的业务服务中心免费获得。)第 7 页
bis(氟磺磺酰基)伊映阴离子(FSI-),Alcl 4-,(BRCl)N-被探索为石墨互构化合物(GICS)的石墨互相中的介体物种。[3]由于直接电池配置,DIB已从Li [4]扩展到Na,[5] K,[6] mg,[7] Ca,[8],[8]和Zn Ion [9]系统。与有机或离子液体电解质不同,近来具有高安全性和低成本的水性电解质最近正在经历蓬勃发展的发育。[3F,10]尽管已经取得了显着的进展,但与DIB相关的关键challenge位于设备级别的低能量密度。以前的尝试增加了DIB的能量密度主要依赖于使用浓缩电解质[6,11]来减少非活性溶剂的重量比。然而,在超高集中,阴极侧的阳极污染只能在动力学上抑制。在DIB充电期间大多数电解质被计算时,这仍然是一个稳定问题。金属阳极的镀层效率也很大程度上取决于在浓缩电解质下形成的钝化相间。在先前的DIB原型中,始终需要过量的金属阳极和元素。最近,使用非活动基板作为当前收集器[12]开发了“无阳极” Li-Metal电池概念,它比Li Metal都更安全,更方便
各国都在进行太阳能收集,以保证能源安全和环境保护,从而减少对石油的过度依赖。通过光伏 (PV) 模块将太阳能转换为电能既可用于并网应用,也可用于离网应用。近年来,锂电池在并网应用中大放异彩,但其在离网应用中的作用却很少在文献中讨论。初步容量和 Peukert 的研究表明,电池质量良好,可以进行生命周期测试。1 A 放电电流下电池容量为 10.82 Ah,Peukert 研究中斜率为 1.0117,表明反应非常快且与放电速率无关。在本研究中,磷酸铁锂电池 (LFP) 在初始特性分析后接受了 IEC 标准中定义的特定于太阳能离网应用的生命周期测试。电池在室温下仅进行了 6 个耐久性单元,其容量就达到额定值的 75%。基于充电状态 (SOC) 操作窗口,讨论了离网应用中 LFP 电池的低寿命问题。在离网应用中,电池在高 SOC 和低 SOC 下运行,这两种情况都会损害锂电池的寿命。高 SOC 运行导致电池间差异,低 SOC 运行导致负极上出现锂镀层。建议为了使其更适合离网应用,默认情况下电池必须超过其额定容量的近 40%。
事故飞机的左主起落架 (LMLG) 外筒自上次大修以来已运行了大约 8 年半,空气加注阀孔中可能存在杂散镀镍。镀镍是维持外起落架筒内径公差的允许程序,但不允许在空气加注阀孔中使用镀层。文献和测试研究表明,镀镍厚度为 0.008 英寸会导致应力系数增加 35%。在 LMLG 使用寿命的某个时刻,会发生一次负载事件,导致空气填充阀孔附近的材料压缩屈服,从而产生残余拉伸应力。在正常运行期间,空气填充阀孔中的应力水平可能在设计范围内,但由于镍引起的残余应力和应力强度因子的增加,这些应力水平增加到足以在空气填充阀孔的每一侧引发和发展疲劳裂纹的水平。通过开发有限元模型 (FEM) 检查空气填充阀孔处的应力,该模型通过从装有仪表的在役 Fedex MD-10 飞机收集的数据进行验证。在役数据和 FEM 表明,在所有条件下,空气填充阀孔中的应力都远高于外筒设计中的预期。对在役结果进行疲劳分析并使用镀镍系数得出
摘要Roselle(芙蓉Sabdariffa)是一种流行的农作物,以其可食用的钙闻名,在食品和饮料行业中广泛使用。然而,收获的罗斯尔钙的质量和保质期通常受到各种因素(包括微生物污染)的损害。微生物在恶化过程中起着重要作用,从而导致质地,颜色和风味的变化,并使其不适合食用或商业用途。使用诸如表面灭菌,连续稀释和在选择性培养基上的镀层等技术从各种钙化状态中收集和分离微生物,以获得微生物的纯培养物。然后将这些培养物进行16S rRNA扩增及其区域的聚合酶链反应(PCR)进行检测,以检测细菌和真菌种群。测序分析和BLAST鉴定出包括曲霉曲霉,甲基氧甲基溶液和Meyerozyma guilliemondii的真菌物种。相比之下,发现的细菌物种是Providencia spp,被认为是Roselle Calyx上最普遍的细菌物种。通常,在研究的微生物多样性中,真菌种类曲霉比细菌种类更为普遍。此外,在恶化的花萼中检测到最普遍的微生物多样性。已经发现细菌和真菌都污染并促进了花萼的恶化,尽管与细菌分离株相比,真菌分离株检测到更高的恶化。总而言之,这些分子工具的应用有望在未来提高Roselle Calyces的质量和销售能力。
摘要:多硫化物中间体 (Li2Sn,2<n≤8) 的穿梭和锂金属表面的枝晶生长阻碍了锂硫 (Li-S) 电池的实际应用。隔膜功能化提供了一种解决这些问题的直接方法。在此,我们展示了一种用于先进 Li-S 电池的多功能 MIL-125(Ti) 改性聚丙烯/聚乙烯隔膜。MIL-125(Ti) 是一种含钛的金属有机骨架 (MOF),具有开放骨架结构、高固有微孔率和路易斯酸特性。与原始隔膜相比,具有 MIL-125(Ti) 涂层的隔膜表现出更好的电解质润湿性和更低的电阻。独特的涂层层充当有效的物理和化学屏障区域,可捕获多硫化物物质,而不会影响 Li+的平稳传输。同时,MOF 中直径约为 1.5 纳米的高度有序微孔引导均匀的 Li + 镀层,从而抑制锂枝晶。因此,MOF 改性隔膜可显著提高 Li-S 电池的循环稳定性和倍率性能。在 0.2 C(1 C = 1675 mA g-1)下 200 次循环后的容量保持率超过 60%,在 2 C 下比容量为 612 mAh g-1。这种简便的方法为高性能 Li-S 电池提供了一条有效的途径。关键词:锂硫电池、金属有机框架、隔膜、穿梭效应、锂枝晶■ 介绍
摘要:开发混合像素探测器需要可靠且具有成本效益的互连技术。互连技术需要适应各个应用程序的音高和模具大小。这项贡献介绍了基于各向异性导电胶粘剂(ACA)的新开发的内部单DIE互连过程的最新结果。ACA互连技术用嵌入在薄膜或糊状的环氧层中的导电微粒代替了焊料。使用Flip-Chip设备螺栓进行热压来实现传感器和ASIC之间的电力连接。ACA技术也可以用于ASIC-PCB/FPC集成,更换电线粘合或大型焊接技术。需要特定的像素垫拓扑来通过微粒启用连接,并创建过量环氧树脂可以流到的腔体。通过内部电气镍浸入金(ENIG)工艺实现此像素垫拓扑。ENIG和ACA过程具有各种不同的ASIC,传感器和专用的互连测试结构,垫直径范围为12℃至140°M,并且在20°M至1.3 mm之间的螺距。产生的组件是电的,带有放射性源曝光,并在具有高摩托颗粒梁的测试中。此贡献介绍了开发的互连和镀层过程,并用上述方法展示了产生和测试的不同混合组件。将重点放在板和互连过程的最新优化上,从而改善了电镀均匀性和互连产量。
农业生态系统是地球上最大的人工生态系统,可提供全球66%的粮食供应。土壤微生物是用于碳和营养循环的发动机。然而,雨养农业生态系统中的受精和种植模式介导的土壤微生物群落结构以及碳和氮转化的驱动机制尚不清楚。该研究是在中国山西省的Changwu农业生态实验站进行的。设计了七种不同的施肥和种植模式。使用磷酸盐脂肪酸(PLFAS)来探索受精和镀层模式对土壤微生物群落结构的影响以及与土壤碳和氮的关系。结果表明,处理之间的土壤物理和化学特性存在显着差异。有机肥料显着增加了土壤碳和氮,并减少了土壤pH值。小麦和玉米旋转处理中总PLFA和微生物基团的含量最高。与种植模式的变化相比,有机肥料对PLFA含量和土壤生态过程的影响更大。土壤微生物群落结构与土壤有机碳(SOC),总碳(TC),总氮(TN)和总磷(TP)具有显着正相关。与施用NP肥料相比,使用有机肥料显着提高了土壤呼吸率和矿化氮含量,同时降低了土壤微生物生物量碳(MBC)。相关分析表明,土壤呼吸与SOC和TP显着相关,并且矿化氮与SOC,硝酸盐氮,TN和MBC显着呈正相关。结构方程模型(SEM)表明,土壤呼吸速率受到TC的显着积极影响,并受到SWC的负面影响,并解释了63%,而矿化氮显着受到TN的影响,并解释了总方差的55%。
开发可再生能源技术是解决耗尽化石燃料带来的全球变暖和空气污染问题的有效方法。由于高理论能力(3860 mAh/g)和锂金属阳极的低电化学潜力,锂金属电池(LMB)引起了极大的研究注意,并通过电动汽车的可扩展应用和剧烈的部署。不幸的是,Li金属阳极的进一步商业化受到Li树突在锂镀层/剥离过程中的随机生长的阻碍,从而导致活跃的LI和分离器上的穿刺持续消耗。最近,MA的小组提出了一种新的方法,以系统地研究官能团与LI型树突生成之间的关系。 所提出的新方法可能是一种有效的工具,可以在电解质添加剂和Li木树状形成中获得新的见解,这对于高表现Li Metal Electrode材料的合理结构设计非常有价值。 ©2021,过程工程研究所,中国科学院。 Elsevier B.V.的出版服务代表Keai Communications Co.,Ltd. 这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。最近,MA的小组提出了一种新的方法,以系统地研究官能团与LI型树突生成之间的关系。所提出的新方法可能是一种有效的工具,可以在电解质添加剂和Li木树状形成中获得新的见解,这对于高表现Li Metal Electrode材料的合理结构设计非常有价值。©2021,过程工程研究所,中国科学院。Elsevier B.V.的出版服务代表Keai Communications Co.,Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
方法食物链的有氧板数微生物学 - 微生物枚举的水平方法 - 第1部分:通过倒板技术在30摄氏度的菌落计数(ISO 4833-1:2013);食物链的微生物学 - 微生物枚举的水平方法 - 第2部分:通过表面镀层技术在30摄氏度下的菌落数(ISO 4833-2:2013:2013和ISO 4833-2:2013/cor 1:2014);欧洲参考方法根据法规(EC)1441/2007号酵母和霉菌是食品和动物喂养物质的微生物学 - 列出酵母和霉菌的水平方法 - 第2部分:水活性的产品中的殖民地计数技术小于或等于或等于0.95(ISO 21527-2:2008)(ISO 21527-2:2008)与ISO 21527的范围0.-aw 5-aw-0.-aw 0. 9- 对于具有<0.6的AW值的干产品,必须提供该方法适合目的的证据。 食物链的大肠杆菌微生物学 - β-葡萄糖醛酸酶 - 阳性大肠杆菌列出的水平方法 - 第1部分:使用膜C的菌落计数技术在44度C上使用膜C和5-溴-4-溴-4-溴-4-溴-3-浓蛋白β-甘氨酸β-葡萄糖酮(ISO和动物)的摄影(ISO 16666649)或练习列出β-葡萄糖醛酸酶阳性的水平方法对于具有<0.6的AW值的干产品,必须提供该方法适合目的的证据。大肠杆菌微生物学 - β-葡萄糖醛酸酶 - 阳性大肠杆菌列出的水平方法 - 第1部分:使用膜C的菌落计数技术在44度C上使用膜C和5-溴-4-溴-4-溴-4-溴-3-浓蛋白β-甘氨酸β-葡萄糖酮(ISO和动物)的摄影(ISO 16666649)或练习列出β-葡萄糖醛酸酶阳性