普吉特湾海军造船厂和中级维修设施高压电工 (NAVFAC):为 PSNS 和其他西北地区海军设施维护、维修和安装高压变电站和配电设备。船舶装配工(车间 11):制造、安装、改装和维修海军舰艇的内部和外部组件和结构。这些结构包括舱壁、地基、门、甲板、舱口、上层建筑、油箱、海底箱、浮筒和甲板室。钣金技工(车间 17):设计、制造、安装和维修海军舰艇上的通风设备、家具、轻型舱壁和门。焊工(车间 26):在海军舰艇的大修、维修和建造中使用复杂的热工艺连接各种金属。电镀工(车间 31):完成各种金属表面的功能性和工业性槽镀和便携式选择性电镀以修复船上部件。其他工艺包括使用抛光技术对各种金属表面进行化学清洗和尺寸恢复。电子工业控制机修工(车间 31):维护、排除故障和修理集成到工业系统(如数控和计算机数控机床、激光测量系统、自动焊接系统、平衡和测量机以及感应炉)的所有线性、数字和光纤电子设备。机械师(车间 31):各种船舶部件的内部维修和测试。使用传统和计算机控制机械制造新部件。能够加工从 ¼ 英寸螺钉到 50 英尺长的推进轴的所有东西。生产机械电工(车间 06):维护、安装、修理、改造和排除故障多种类型的工业机械、工具和设备。机械、工具和设备包括:车床、铣床、压力机、焊接和火焰切割设备、热封机和橡胶磨机。船用机械机修工(车间 38):排除故障、修理、更换和维护海军舰艇上的各种机械系统。工作范围覆盖整艘船——从桅杆天线到螺旋桨,从船头到船尾。船舶电工(车间 51):安装、连接和操作测试船上电气系统和组件,包括电力和照明系统、声控电话、电热和通风设备。船舶管道工(车间 56):安装、维修、改造和更换海军舰艇上的管道系统。系统包括饮用水、航空燃料和高压蒸汽。
1.1-10C 测试试样和图稿生成任务组 2.3-11 层压预浸料材料小组委员会 3.3-11G 金属表面腐蚀任务组 4.3-12D 玻璃纤维增强材料任务组 5.3-12E 基础材料圆桌会议任务组 6.4-14 电镀工艺小组委员会 7.4-33 无卤素材料小组委员会 8.5-21F 球栅阵列任务组 9.5-21H 底部端接元件 (BTC) 任务组 10.5-21M 冷连接压接任务组 11。5-22A J-STD-001 任务组 12。5-22A-SKELETON J-STD-001 X 射线要求 13。5-22ARR J-STD-001 保形涂层材料和应用行业评估 14。5-22AS J-STD-001 空间电子组件任务组 15。5-24B 焊膏任务组 16。5-32A 离子色谱离子电导率任务组 17。5-32B SIR 和电化学迁移任务组 18。5-32E 导电阳极丝 (CAF) 任务组 19。6-10C 镀通孔可靠性加速测试方法 20。7-12 微切片小组委员会 21。7-23 装配工艺影响手册小组委员会 22。7-24 印刷电路板工艺影响手册小组委员会 23。7-24A 印刷电路板工艺影响手册任务组 24。7-31FS IPC WHMA-A-620 空间电子组件附录任务组 25。7-32C 电气连续性测试任务组 26。6-10D SMT附件可靠性测试方法 TG 27。D-55A 嵌入式电路指南任务组 28。B-11 3-D 电子封装小组委员会 29。D-13 柔性电路基材小组委员会 30。D-22 高速高频板性能小组委员会 31。D-24C 高频测试方法任务组频域方法 32。D-31B IPC-2221 2222 任务组 33。D-32 热应力测试方法小组委员会 34。D-33A 刚性印刷电路板。性能规范 TG 35。D-33AS IPC-6012 航空航天附录任务组 36。D-35 印刷电路板存储和处理小组委员会 37。D-55 嵌入式设备流程实施小组委员会 38。D-55-AT IPC-6017A A 团队 39。V-TSL-MVIA-CHEMPR-AT 化学工艺和冶金 A 团队 40。V-TSL-MVIA-SIMMOD-AT 模拟和建模 A 团队
用于细线/间隔电路的受控表面蚀刻工艺 Ken-ichi Shimizu、Katsuji Komatsu、Yasuo Tanaka、Morio Gaku 三菱瓦斯化学公司,日本东京 摘要 随着半导体芯片设计向越来越细的线发展,塑料封装的 PWB 和基板的设计规则正朝着更高密度发展。首先,研究了传统减成工艺可以构建多细的线,发现即使使用一些新技术,该工艺的线/间隔也限制在 40/40 左右。下一个挑战是找到一种可以构建线/间隔并摆脱加成或半加成工艺的一些问题的工艺。经证实,与 CSE(受控表面蚀刻)工艺一起使用的改进的图案电镀工艺能够制作更细的线/间隔电路,例如大约 25/25 微米。CSE 工艺的特点是使用改进的软蚀刻溶液对基铜进行均匀蚀刻。简介 半导体芯片设计正朝着越来越细的线发展,以满足更多功能和高速的需求。这一趋势对高密度 PWB 和塑料封装基板提出了越来越高的需求,需要开发许多新材料和新工艺。为了满足这些要求,基板设计规则的一些关键点是线/间距和 PTH(镀通孔)或 BVH(盲孔)的焊盘直径。关于焊盘直径,人们付出了很多努力来减小孔径,工艺已从机械钻孔转变为激光钻孔,这已成为行业中处理较小孔(例如约 80 微米)的标准。另一方面,许多研究同时进行以开发更小的线/间距。然而,对更细线/间距的需求越来越强烈,未来将更加强烈。因此,本报告的第一个目标是找出“减法”可以实现的最小线/间距,因为自 20 世纪 60 年代多层 PWB 进入市场以来,这种方法一直被用作铜线形成的主要工艺。接下来,研究了另一种方案:为了实现更精细的线/间距,人们开始研究“图案电镀工艺”。在 20 世纪 60 年代,除了“减成法”等面板电镀工艺外,还开发了“图案电镀工艺”、“加成法”和“半加成法”等多种图案电镀工艺。最近,由于能够实现更精细的线/间距和高频矩形横截面,这种图案电镀工艺比面板电镀更受业界青睐。因此,下一个挑战是找到一种能够支持 25/25 等更精细的线/间距技术的工艺。为了解决“半加成法”中的一些问题,人们研究了“图案电镀工艺”。
1。RT Proto FPGA仅用于硬件正时验证。它们不应用于太空飞行应用。它们也不应用于需要太空飞行零件质量的应用或活动,例如空间飞行硬件的资格。2。rt-proto零件。未执行MIL-STD-883 B类测试。rt-proto零件不受温度循环,罚款和总泄漏测试,X射线检查,PIND测试,B组组测试或燃烧。3。Microchip不能保证RT Proto的寿命或可靠性。4。rt-proto fpgas提供陶瓷和塑料包装。未测试盖密封的密封性,也不能保证。密封完整性应足以在普通PCB制造和清洁过程中保护FPGA。但是,由于不能保证捕捉性,因此不应对RT-Proto设备进行热真空测试。系统级飞行模型资格应使用Flight Fightifief FPGA进行,这意味着FPGA至少筛选为MIL-STD-883级B级。5。RT-Protos的盖子具有浅凹坑,穿过顶部镀层层,但不穿透盖子的厚度。这个酒窝的目的是阻止伪造。钻井操作不会导致设备的操作特性恶化。6。7。rt-proto单元将被标记为“原始”。rtg4原型塑料FC1657和FCG1657包装中没有那么凹坑,无法降低施加凹痕过程中损坏设备的风险。rt-proto单元可以使用不具备空间飞行资格的装配过程来组装。8。rt-proto单元可能具有化妆品视觉缺陷。9。RT-Proto单元未经DLA或QML认证。10。rt-proto单元未进行辐射性能测试。11。系统生成的一致性证书将与单位发货,请注意,这不是质量保证的手工签名。将没有其他数据运输,也不会带有RT-Proto单元发货。12。Microchip通过本地现场应用工程师和一般的技术支持渠道为RT Proto提供一般技术支持,但不会为RT Proto设备提供故障分析支持。13。如果需要在Microchip工厂进行编程,则必须在订单放置时提供编程文件; Microchip无法保留库存或单位,从待收到客户编程文件的过程中。14。RT Proto单元将不可用特定的或特定于客户的测试。单批日期代码,特定日期代码,单个晶圆批,日期代码限制或特定的晶圆批次的请求将不接受。15。微芯片不能保证与RT-Proto单元相同的晶圆批次或日期代码的飞行单位可用性。
设备,采用非平衡分子动力学方法来研究工作温度,界面大小,缺陷密度和缺陷类型对氮化碳/石墨烯/钻石异种结构的界面导热率的影响。此外,计算各种条件下的声子状态密度和声子参与率,以分析界面热传导机制。结果表明,界面热电导随温度升高而增加,突出了异质性固有的自我调节热量耗散能力。随着温度从100升的增加,单层石墨烯结构的界面热电导增加了2.1倍。这归因于随着温度升高的重叠因子的增加,从而增强了界面之间的声子耦合,从而导致界面导热率增加。此外,在研究中发现,增加氮化岩和石墨烯的层数会导致界面热电导量减少。当氮化壳层的数量从10增加到26时,界面的导热率降低了75%。随着层数增加而减小的重叠因子归因于接口之间的声子振动的匹配减少,从而导致较低的热传递效率。同样,当石墨烯层的数量从1增加到5时,界面热电导率降低了74%。石墨烯层的增加导致低频声子减少,从而降低了界面的导热率。此外,多层石墨烯可增强声子定位,加剧了界面导热的降低。发现引入四种类型的空缺缺陷会影响界面的导电电导。钻石碳原子缺陷导致其界面导热率增加,而镀凝剂,氮和石墨烯碳原子的缺陷导致其界面导热降低。随着缺陷浓度从0增加到10%,由于缺陷散射,钻石碳原子缺陷增加了界面热电导率,增加了40%,这增加了低频声子模式的数量,并扩大了界面热传递的通道,从而提高了界面热电导率。石墨烯中的缺陷加强了石墨烯声子定位的程度,因此导致界面导热率降低。胆汁和氮缺陷都加强了氮化炮的声子定位,阻碍了声子传输通道。此外,与氮缺陷相比,甘露缺陷会引起更严重的声子定位,因此导致界面的界面热电导率较低。这项研究提供了制造高度可靠的氮化炮设备以及广泛使用氮化壳异质结构的参考。
机械外壳结构:挤压铝 6063-T5 合金外壳和 LED 托盘,带有压成型钢内部组件,以确保强度、对准和安装连接。我们的高品质压铸端盖经过精心设计,可以隐藏所有紧固件并将密封垫圈保留在灯具内部,同时完成此灯具的简洁外观。对准/组装:对准系统采用四点对准和连接方法,旨在创建更直的行并最大限度地减少各部分之间的接缝(现场组装)。四个对准销确保外部挤压铝轨对准,而拉紧螺钉固定外壳到外壳的连接。额外的对准饼干兼作遮光罩。长度:3S 的最小长度为 2 英尺(标称),可提供额外的 1 英尺增量(±0.030”)。提供更长的灯具排,并将配置 4 英尺、5 英尺、6 英尺、7 英尺和 8 英尺灯具。一个电源馈送的最大运行长度为 72 英尺。超过 72 英尺的连续运行需要第二个电源。安装方法/硬件:标准悬挂硬件包括 1/16 英寸直径、镀锌钢航空电缆(带有可调节和可锁定的镀镍电缆夹)和白色 18/5 SJT 电源线。标准硬件包括 60 英寸电源线和 54 英寸航空电缆,以适应距离天花板 48 英寸的安装距离。提供天花板遮篷。所有悬挂硬件都经过测试,并符合 UL1598 对负载/灯具支撑的要求。外部饰面:3S 提供白色和黑色聚酯粉末涂层,以确保耐用性。悬挂组件:灯具由 1/16 英寸镀锌航空电缆悬挂。电缆通过 ¼-20 螺纹天花板电缆管连接到天花板悬挂点,电缆管包含一个螺纹环来支撑馈电/吊架罩,从而无需拆除悬挂电缆即可接触接线盒/吊架,从而可以检查/维修导线而不必支撑灯具。馈电罩外径为 5 英寸,吊架罩外径为 2 英寸。电缆长度可指定为 48 英寸、96 英寸和 144 英寸悬挂长度。天花板类型选项为“T1”T 型网格、“T9”T 型网格、“SC”螺丝槽网格、“HC”硬天花板或“JB”硬天花板接线盒安装座。集成控制:3S 提供可选集成控制。传感器设计方便,可安装在孔径中,位于每个灯具的供电端。对于运行,每个灯具部分将配备一个离散传感器,以控制该特定部分。飞利浦 EasySense 是标准日光/占用传感器。需要 DALI 驱动器。如果您的项目需要未列出的组件或系统,请联系 Lumato 以查看要求。
商业锂离子电池自1990年代引入以来的30年来,对我们的社会产生了深远的影响。[1]从在微型电子产品中工作到是电动汽车的核心,锂离子电池的能量状况正在增加,但是在这些成就的背后是艰难的挣扎。commersercial锂离子电池通常使用石墨作为阳极,其理论能力为372 mAh g-1,匹配适用的阴极,通常具有细胞级的能量密度,通常为≈250wh kg-1(≈700wh l-1)。[2,3]通过将硅添加到石墨中,可以进一步提高能量密度,[4],但目前也限制为≈300wh kg -1。使用锂金属阳极对于显着增加电池能量密度至关重要。锂金属在所有可行的阳极材料中都具有低氧化还原电势(与标准氢电解质[SHE]与标准氢电解质[SHE]与标准氢电解质[SHE]与标准氢电解质[SHA]与标准氢电解质[SHE]的)(3860 mAh g -1,3860 mAh g -1,3860 mAh g -1)中的。 [2,5] LI-LMO电池(锂过渡金属氧化物[LMO])可以提供≈440WH kg-1的特异能量。 [2]但是,锂电池需要过多的锂作为阳极,这阻碍了能量密度的增加。 因此,引入了无阳极(可充电)锂金属电池(AFLMB),以帮助任何给定的岩体阴极系统提供最大的能量密度。 AFLMB是一种锂金属电池,在首次电荷期间形成初始锂阳极。 [6–8]。[2,5] LI-LMO电池(锂过渡金属氧化物[LMO])可以提供≈440WH kg-1的特异能量。[2]但是,锂电池需要过多的锂作为阳极,这阻碍了能量密度的增加。因此,引入了无阳极(可充电)锂金属电池(AFLMB),以帮助任何给定的岩体阴极系统提供最大的能量密度。AFLMB是一种锂金属电池,在首次电荷期间形成初始锂阳极。[6–8]更具体地说,从锂化阴极中提取的锂离子被可逆地镀到裸电的收集器(CC)上,作为锂金属,这意味着在阳极与阴极容量比(N/P)中的预储存的锂完全零。基于此构造,AFLMBS比当前基于锂的电池具有多个优点:1)增加体积和重量的能量密度; 2)改善了没有大量锂金属的细胞安全性; 3)简化的制造过程,因为不再需要超薄的锂金属; 4)由于细胞组装过程中没有游离锂金属,改善了日历寿命和安全性; 5)由于缺乏过量的锂金属来补充不可逆的损失,因此对锂金属蝙蝠的电化学性能进行了更现实的评估。但是,就像其他液态锂金属电池一样,液体AFLMB面临着由于周期期间树突状锂的生长而导致的内部短路和灾难性细胞故障的可能性。
可控液体离子氮碳共渗工艺(TENIFER ® 和 ARCOR ® )可替代电镀涂层 Dr. Joachim Boßlet Durferrit GmbH,德国曼海姆 Danilo Assad Ludewigs Durferrit do Brasil,巴西迪亚德马 众所周知,由于其工艺特性,如高质量水平的最佳再现性,离子液体中的氮碳共渗可为处理后的部件提供出色的耐磨性、点蚀、咬合、卡死和表面疲劳抗性。但是,防腐效果仍然中等。可以通过在氧化盐熔体中进行后热处理来解决此问题,在氮化层表面产生非常薄但致密的氧化层。结合抛光和浸渍,氧化部件可以具有光滑、美观的黑色表面,从而显著提高盐雾试验中长达 1000 小时的耐腐蚀性,而不会失去上述优点。本文讨论了应用受控液体离子氮碳共渗 (CLIN) 工艺(如 TENIFER ® 和 ARCOR ®)来取代镀铬、镀镍和镀锌等电镀层,因为它们具有出色的耐腐蚀性和耐磨性,并强调了使用它们的经济和环境优势。由于易于操作,不需要复杂的工厂设备。工艺时间相当短,允许灵活工作,而无需为工作负载建立更大的缓冲容量。1.简介 CLIN 是用于钢和铸铁氮碳共渗和氧化的现代环保工艺的家族名称。氮和碳的扩散会产生所谓的化合物层,该层具有非金属特性。与其他涂层相比,该边缘区域的突出优势在于,牢固的化合物扩散在基材上,而不是涂在表面上。因此,它们表现出非常好的附着力,裂纹敏感性明显降低。根据所用材料,这些层的硬度为 800 至 1500 维氏硬度。化合物层由下面的扩散层支撑。CLIN 处理的部件可提供卓越的防磨损、防卡死、防擦伤、防点蚀和防疲劳保护。2.工艺特点 基本上所有类型的铁材料都可以在盐熔体中进行氮碳共渗,无需任何特殊的初步预处理,例如工具钢、低碳钢、阀门钢、奥氏体钢、铸铁或烧结材料。工艺顺序并不复杂。处理温度通常为 570 - 590 °C。经过短暂的预清洁和在空气中预热至 350 - 400 °C 后,将部件在盐熔体中进行氮碳共渗,通常持续 60 - 120 分钟。在特殊情况下,可以使用较低 (480 °C) 或较高 (630 °C) 的温度。对于淬火,使用水、空气、氮气、真空或氧化冷却浴。随后,用热水级联清洁炉料。对于氮碳共渗熔体,仅需控制以下几个参数: • 熔体的化学成分 • 处理温度 • 处理时间 与其他处理介质相比,盐熔体具有极高的氮含量。浸入液体盐浴后,氮碳共渗过程立即开始。几分钟后,已经形成了一个紧凑的
背景:Epetraborole(EBO)是含硼的口服叶木基-TRNA合成酶的口服抑制剂,这是蛋白质合成中必不可少的酶; EBO表现出对非结核分枝杆菌的有效活性。这些研究评估了EBO的口服剂量(PO)针对慢性小鼠感染模型中的5 M. Avium复合物(MAC)菌株作为单一疗法或与标准护理[SOC;克拉霉素(CLR),利法布丁(RFB),ethambutol(emb)]方法:针对Avium 2285R M. 2285r评估EBO的试验性慢性疗效研究,每天1、10、30、100、300和500 mg/kg PO每天(QD)(QD),而不是250 mg/kg/kg Clr PO QD。C57BL/6小鼠用1x10 11 CFU的肺气溶胶感染。从感染后第28天开始进行56天的治疗。在感染后第1、28和84天评估肺中的细菌负担(CFU),通过在Middlebrook 7H11木炭琼脂板上镀匀性稀释液。与MAC的SOC治疗(CLR 250 mg/kg,RFB 100 mg/kg,100 mg/kg),EBO剂量为100、200、300或400 mg/kg QD评估了4株Mac菌株。在一组未感染的小鼠中确定了EBO的口服暴露(表1)。 结果:在对Avium 2285R的一项研究中,生物膜形成菌株,EBO在所有剂量上测试的EBO明显好于以250 mg/kg剂量的CLR(图1),并且在含有EBO的琼脂平板上检测到NO NO CFU(16 mg/L)。 在随后的研究中,将SOC与其他4种MAC菌株中的EBO进行了比较(图2)。 结论:在这种慢性小鼠肺部感染模型中,在第84天未检测到Avium 2285R的EBO耐药性发展。在一组未感染的小鼠中确定了EBO的口服暴露(表1)。结果:在对Avium 2285R的一项研究中,生物膜形成菌株,EBO在所有剂量上测试的EBO明显好于以250 mg/kg剂量的CLR(图1),并且在含有EBO的琼脂平板上检测到NO NO CFU(16 mg/L)。在随后的研究中,将SOC与其他4种MAC菌株中的EBO进行了比较(图2)。结论:在这种慢性小鼠肺部感染模型中,在第84天未检测到Avium 2285R的EBO耐药性发展。EBO单一疗法的功效比SOC比对Avium ATCC 700898更好,而与M. Intacellulare 1956,M。el. ellacelulare DNA00055和M. el. ellacululare DNA00111相比,与2-4.8 log 10相比,它与M. Intarululare DNA00055和M. M. soc一样好。在测试的所有四种菌株中,200 mg/kg EBO近似于500 mg的人口腔等效剂量,与单独使用SOC相比,SOC的细菌杀死从1.4-3.0 log 10 CFU增加,从而导致总肺CFU降低总量为4.6-5.6 log 10。eBO与5种MAC菌株具有有效的体内功效,并在与SOC结合使用时会显着提高功效,从而支持EBO的进一步临床发育。
参考文献1。Nieuwenhuis等人,2012年,《九个母猪牛群中猪生殖和呼吸综合征病毒爆发的经济分析》。VET REC 170:225 2。 progressis通知(SPC)(国家)3。 Reynaud等人,在受污染的环境中使用灭活的PRRS疫苗的镀金和母猪接种疫苗接种的动物效应。 IPVS 2000:601 4。 Joisel等人,PRRS:带有疫苗接种疫苗的疫苗接种。 Pig Journal 2001,48:120-137 5。 Lopez and Osorio,2004年,中和抗体在PRRSV保护免疫中的作用,兽医免疫疾病102:155-163 6。 Kim等人,在韩国农场中疫苗接种EU型PRRS疫苗后的ELISA抗体反应。 APVS 2015:83 b。 Kim等人,SOW中的血清中和(SN)抗体反应,并在韩国农场的eu型PRRS疫苗中播种后转移到小猪中。 APVS 2015:84 7。 Juillard等人,带有不同PRRSV菌株的离体刺激,用于细胞介导的疫苗接种猪的免疫力监测。 ISERPD 2007:144 8。 diaz等,2013年,比较不同的疫苗接种时间表,以维持针对猪生殖和呼吸综合征病毒的免疫反应。 VET Journal 197:438-444 9。 Meyns等人,PRRSV疫苗接种的未来:通过灭活的疫苗提升,以利用先前存在的免疫力,对更强大的保护的创新。 proc。 国际PRRSV大会根特2015:103 10。 Delany等人,2014年,21世纪的疫苗。 IPVS 2014:565VET REC 170:225 2。progressis通知(SPC)(国家)3。Reynaud等人,在受污染的环境中使用灭活的PRRS疫苗的镀金和母猪接种疫苗接种的动物效应。IPVS 2000:601 4。 Joisel等人,PRRS:带有疫苗接种疫苗的疫苗接种。 Pig Journal 2001,48:120-137 5。 Lopez and Osorio,2004年,中和抗体在PRRSV保护免疫中的作用,兽医免疫疾病102:155-163 6。 Kim等人,在韩国农场中疫苗接种EU型PRRS疫苗后的ELISA抗体反应。 APVS 2015:83 b。 Kim等人,SOW中的血清中和(SN)抗体反应,并在韩国农场的eu型PRRS疫苗中播种后转移到小猪中。 APVS 2015:84 7。 Juillard等人,带有不同PRRSV菌株的离体刺激,用于细胞介导的疫苗接种猪的免疫力监测。 ISERPD 2007:144 8。 diaz等,2013年,比较不同的疫苗接种时间表,以维持针对猪生殖和呼吸综合征病毒的免疫反应。 VET Journal 197:438-444 9。 Meyns等人,PRRSV疫苗接种的未来:通过灭活的疫苗提升,以利用先前存在的免疫力,对更强大的保护的创新。 proc。 国际PRRSV大会根特2015:103 10。 Delany等人,2014年,21世纪的疫苗。 IPVS 2014:565IPVS 2000:601 4。Joisel等人,PRRS:带有疫苗接种疫苗的疫苗接种。Pig Journal 2001,48:120-137 5。Lopez and Osorio,2004年,中和抗体在PRRSV保护免疫中的作用,兽医免疫疾病102:155-163 6。 Kim等人,在韩国农场中疫苗接种EU型PRRS疫苗后的ELISA抗体反应。APVS 2015:83 b。 Kim等人,SOW中的血清中和(SN)抗体反应,并在韩国农场的eu型PRRS疫苗中播种后转移到小猪中。 APVS 2015:84 7。 Juillard等人,带有不同PRRSV菌株的离体刺激,用于细胞介导的疫苗接种猪的免疫力监测。 ISERPD 2007:144 8。 diaz等,2013年,比较不同的疫苗接种时间表,以维持针对猪生殖和呼吸综合征病毒的免疫反应。 VET Journal 197:438-444 9。 Meyns等人,PRRSV疫苗接种的未来:通过灭活的疫苗提升,以利用先前存在的免疫力,对更强大的保护的创新。 proc。 国际PRRSV大会根特2015:103 10。 Delany等人,2014年,21世纪的疫苗。 IPVS 2014:565APVS 2015:83 b。 Kim等人,SOW中的血清中和(SN)抗体反应,并在韩国农场的eu型PRRS疫苗中播种后转移到小猪中。APVS 2015:84 7。Juillard等人,带有不同PRRSV菌株的离体刺激,用于细胞介导的疫苗接种猪的免疫力监测。ISERPD 2007:144 8。 diaz等,2013年,比较不同的疫苗接种时间表,以维持针对猪生殖和呼吸综合征病毒的免疫反应。 VET Journal 197:438-444 9。 Meyns等人,PRRSV疫苗接种的未来:通过灭活的疫苗提升,以利用先前存在的免疫力,对更强大的保护的创新。 proc。 国际PRRSV大会根特2015:103 10。 Delany等人,2014年,21世纪的疫苗。 IPVS 2014:565ISERPD 2007:144 8。diaz等,2013年,比较不同的疫苗接种时间表,以维持针对猪生殖和呼吸综合征病毒的免疫反应。VET Journal 197:438-444 9。Meyns等人,PRRSV疫苗接种的未来:通过灭活的疫苗提升,以利用先前存在的免疫力,对更强大的保护的创新。proc。国际PRRSV大会根特2015:103 10。Delany等人,2014年,21世纪的疫苗。IPVS 2014:565IPVS 2014:565Embo Mol Med,6(6):708–720 11。lu,2009年,异源原始促进疫苗接种。Curr Opin Immunol 21(3):346–351 12。Nolz和Harty,2011年,促进疫苗接种的策略和影响,以产生记忆CD8 T细胞。Adv Exp Med Biol 780:69-83 13。Knockaert等人,在PRRSV感染的农场妊娠结束时进行进展后的生殖性能改善了。ESPHM 2015:PO84 14。 Willems等人,在繁殖者中实施混合PRRSV疫苗计划后,苗圃和增生单元中PRRSV循环的稳定。 ESPHM 2015:PO 74 15。 Willems,PRRSV疫苗接种计划的有益影响,该计划结合了经过改良的实时疫苗和ProgressISR对病毒循环和技术性能的影响。 IPVS 2016:PO-PW1-147 16 Spaans等人,双技术效应的效应Prim Boost Boost在SOWS中的疫苗接种在pRRSV后prrsv中的循环中的疫苗接种。 IPVS 2016:PO-PW1-182 17。 defoort等人,在妊娠结束时使用ProgressISR的疫苗接种程序在农场中稳定PRRSV循环。ESPHM 2015:PO84 14。Willems等人,在繁殖者中实施混合PRRSV疫苗计划后,苗圃和增生单元中PRRSV循环的稳定。ESPHM 2015:PO 74 15。 Willems,PRRSV疫苗接种计划的有益影响,该计划结合了经过改良的实时疫苗和ProgressISR对病毒循环和技术性能的影响。 IPVS 2016:PO-PW1-147 16 Spaans等人,双技术效应的效应Prim Boost Boost在SOWS中的疫苗接种在pRRSV后prrsv中的循环中的疫苗接种。 IPVS 2016:PO-PW1-182 17。 defoort等人,在妊娠结束时使用ProgressISR的疫苗接种程序在农场中稳定PRRSV循环。ESPHM 2015:PO 74 15。Willems,PRRSV疫苗接种计划的有益影响,该计划结合了经过改良的实时疫苗和ProgressISR对病毒循环和技术性能的影响。IPVS 2016:PO-PW1-147 16 Spaans等人,双技术效应的效应Prim Boost Boost在SOWS中的疫苗接种在pRRSV后prrsv中的循环中的疫苗接种。 IPVS 2016:PO-PW1-182 17。 defoort等人,在妊娠结束时使用ProgressISR的疫苗接种程序在农场中稳定PRRSV循环。IPVS 2016:PO-PW1-147 16 Spaans等人,双技术效应的效应Prim Boost Boost在SOWS中的疫苗接种在pRRSV后prrsv中的循环中的疫苗接种。IPVS 2016:PO-PW1-182 17。 defoort等人,在妊娠结束时使用ProgressISR的疫苗接种程序在农场中稳定PRRSV循环。IPVS 2016:PO-PW1-182 17。defoort等人,在妊娠结束时使用ProgressISR的疫苗接种程序在农场中稳定PRRSV循环。
