摘要:本文介绍了使用叶状脂质的稳定化,N-(甲基氧基乙基氧苯乙烯)-1,2-二抗乙酰烯酰基-SN-甘油-3-磷酸乙醇胺钠含量(DSPE-PEG)(DSPE-PEG)(DSPE-PEG)(DSPE-PEG)(DSPE-PEG)和自然海关的评估。脂质体,并比较不同长度和DSPE-PEG的引入比率。随着PEG比的增加,存活率增加。此外,研究了不同阳离子溶液(Na +,K +,Mg 2+和Ca 2+溶液)中的存活率,以估计DSPE-PEG引入的效果。我们提出,脂质体稳定性的这些变化是由于阳离子引起的,特别是聚(乙二醇)(PEG)(PEG)链和二价离子之间的相互作用,这有助于使阳离子难以进入脂质膜。我们的研究提供了对PEG脂质使用的见解,并可能为使用不同自然环境的脂质体分子机器人制造一种有希望的方法。
图4。常规的2D TEM成像和AS合成CGO和HF-CGO的光谱。HF-CGO(D)结构的AS合成CGO(A)和HAADF图像的 HRTEM图像。 获取鳗鱼光谱图像的区域在(a)和(d)中以绿色标记。 在(b)中显示了AS合成的CGO和HF处理的CGO的(b)中显示了频谱图像区域的分段颜色图及其相应的参考光谱。 共同获得的ADF图像,顶部覆盖线扫描分析的路径,并且沿着这些线的鳗鱼信号量化的阳离子比在(c)中显示了HF处理的CGO的(c)中的cGO和(f)。 在ADF图像和阳离子比例定量的散点图中都标记了线扫描所用的晶界。 散点图内的红色数字是沿着与x轴距离(NM)相对应的线路路径的像素位置。HRTEM图像。获取鳗鱼光谱图像的区域在(a)和(d)中以绿色标记。在(b)中显示了AS合成的CGO和HF处理的CGO的(b)中显示了频谱图像区域的分段颜色图及其相应的参考光谱。共同获得的ADF图像,顶部覆盖线扫描分析的路径,并且沿着这些线的鳗鱼信号量化的阳离子比在(c)中显示了HF处理的CGO的(c)中的cGO和(f)。在ADF图像和阳离子比例定量的散点图中都标记了线扫描所用的晶界。散点图内的红色数字是沿着与x轴距离(NM)相对应的线路路径的像素位置。
别是石墨烯的 D 、 G 和 D+G( 也称 G') 峰 [ 19 ] ,这表 明两种样品都生成了高质量的石墨烯。其中 D 峰 是由于芳香环中 sp 2 碳网络扭曲使得碳原子发生 对称伸缩振动引起的 [ 20 ] ,用于衡量材料结构的无 序度,它的出现表明石墨烯的边缘较多或者含有 缺陷,这与 SEM 观察到的结果一致; G 峰是由 sp 2 碳原子间的拉伸振动引起的 [ 21 ] ; G' 峰也被称 为 2 D 峰,是双声子共振二阶拉曼峰,其强度与 石墨烯层数相关 [ 22 - 24 ] 。与 LIG 拉曼曲线相比, MnO 2 / LIG 在 472.6 cm −1 波段较强的峰值,对应于 Mn − O 的伸缩振动峰,证实了 MnO 2 的晶体结构。 XRD 测试结果表明, MnO 2 /LIG 在 2 θ =18.002° 、 28.268° 、 37.545° 、 49.954° 和 60.244° 处的特征峰分别对应 α - MnO 2 的 (200) 、 (310) 、 (211) 、 (411) 和 (521) 晶面 ( 图 4 b PDF#440141) , α -MnO 2 为隧道结构,可容 纳溶液中的阳离子 ( 如 Zn 2+ 、 Li + 、 Mg 2+ 、 Na + ) [ 21 ] 。 25.9° 和 44.8° 处的峰为 LIG 中 C 的特征衍射峰。
Huang,Z.,Chen,B.,Sagar,L。K.,Hou,Y.,Proppe,A. 稳定,无溴,四方钙钛矿,1。 7 eV带隙通过A位置阳离子取代。 ACS材料信,2(7),869–872。 https://doi.org/10.1021/acsmaterialslett.0c00166版权所有/许可©美国化学学会Huang,Z.,Chen,B.,Sagar,L。K.,Hou,Y.,Proppe,A.稳定,无溴,四方钙钛矿,1。7 eV带隙通过A位置阳离子取代。ACS材料信,2(7),869–872。https://doi.org/10.1021/acsmaterialslett.0c00166版权所有/许可©美国化学学会
我们从三个A位置阳离子混合Sn – Pb Perovskite,CS 0.1 FA 0.6 MA 0.3 PB 0.5 SN 0.5 I 3,(MA =
诉讼联合大会Yogyakarta 2019,Hagi - Iagi - Iafmi-iatmi(JCY 2019),Yogyakarta,11月25日至28日,有机页岩抑制剂将高性能水基泥浆(HPWBM)应用于限制了Senale/clays ligaltor limant kharias khariasa:khariasa:khariasa khariasa:卡顿(2)和Bambang Sudewo(2)(1)印度尼西亚班登理工学院(2)MADANI ALAM LESTARI,印度尼西亚雅加达(3)pembangunan pembangunan nasional nasional“退伍军人” Yogyakarta Yogyakarta,D.I。日益卡塔,印度尼西亚电子邮件:kharismaidea@students.itb.ac.id摘要添加添加剂,例如无机页岩抑制剂(NACL,CACL2,KCL和NASIO3)和多胺(Mal-Shales hib/msh hib)减少粘土中的水分。无机页岩抑制剂只有与含有这些盐的水基钻孔液与粘土接触(临时抑制作用),含有盐的液体被淡水取代,粘土将膨胀,因为水合会膨胀,并破坏了钻探地层的稳定。无机页岩在绿岩是主要粘土矿物的页岩形成中有效。无机页岩抑制剂当粘土中含有几个阳离子或不交换阳离子时无效。已经使用了大量盐(高盐度)或其他电解质来增加水相的离子浓度,以阻止渗透性水合。无机页岩抑制剂对高于极限的化学生物生态系统产生不利影响。有关多胺页岩抑制剂/MSH的本文研究,以限制水合页岩/粘土并减轻盐的环境问题。是页岩矩阵/表面反应的单阳离子交换机制。多胺/MSH是有机页岩抑制剂,它是永久的页岩抑制剂,因为适当的阳离子交换能力和较小的水合离子半径与无机页岩抑制剂相比。阳离子源是阳离子胺化合物。MSH是混合多胺的持续所有人。页岩抑制剂材料有效防止页岩/粘土肿胀。mSH的性能是外观淡黄至琥珀色液体,特异性重力在1.12-1.17,pH:7-9左右,并在水中溶于水中,通过嵌入和减少粘土血小板之间的空间,以使水分子不会穿透并引起沙莱膨胀。
背景:这项研究的目的是为Oxaliptin(OXA)(OXA)(OXA)和MDC1(MDC1-AS)的反义LNCRNA编制新型的磁热阳离子脂质体药物载体,以使其对宫颈癌细胞进行,并评估该药物携带者及其抗抑制剂及其抗抑制剂对颈椎效应的效率。方法:使用薄膜水合方法制备热敏磁阳离子脂质体。将OXA和MDC1-AS载体加载到代码传递系统中,并确定体外OXA热敏释放活性,MDC1-AS调节MDC1的效率,体外细胞毒性和体内抗肿瘤活性。结果:代码传递系统具有理想的目标递送功效,Oxa Thermosensi tive释放和MDC1-AS调节MDC1。与单一药物递送相比,OXA和MDC1-AS的代码分子增强了体外和体内宫颈癌细胞生长的抑制。结论:OXA和MDC1-As磁热敏感性脂质体药物载体的新型代码分子可用于宫颈癌的联合化学疗法和基因治疗。关键字:磁热敏性阳离子脂质体,奥沙利铂,MDC1的反义lncRNA,靶向治疗,宫颈癌
将过渡金属配位球体塑造到催化中未得到的路线:主要阳离子和铁三合会金属(FE,CO,NI)作为起始套件
由于阳离子无序金属氧化物限制了锂离子的扩散,导致其电化学性能较差,因此早期研究较少重视阳离子无序金属氧化物作为锂离子电池正极材料的研究。然而,一种新的无序岩盐 (DRX) 结构材料 Li 1.211 Mo 0.467 Cr 0.3 O 2 的发现,其在 0.05 C 时具有 > 260 mAh g − 1 的高容量,为这一新兴领域开辟了新的研究前景,并确立了 DRX 材料作为一种有前途的替代品的地位,与目前广泛使用的层状正极材料相比,它具有更广泛的过渡金属元素选择。DRX 材料的一些主要障碍包括阻碍锂离子扩散的𝜸-LiFeO 2 型阳离子短程有序性、不可逆氧损失和过渡金属溶解,这些也对适当的表征技术提出了挑战。人们已经采用了多种性能优化策略,包括氟掺入、高熵改性和表面涂层。本评论文章重点介绍表征技术的进步,以揭示锂离子扩散和DRX正极材料降解的潜在机制,以解决上述挑战,并为未来对此类材料的研究提供启发。