摘要:阵风减缓对于改善飞机飞行品质、降低阵风载荷具有重要意义,利用飞机响应(反馈控制)和阵风扰动信息(前馈控制)来改善阵风减缓效果值得重视。本文设计并分析了一种由前馈控制系统(FFCS)和反馈控制系统(FBCS)组成的组合控制系统(CCS),同时通过数值模拟和风洞试验分别对CCS、单一FFCS和单一FBCS的阵风减缓效果进行了分析比较。以柔性机翼为研究对象,通过数值模拟分析了3种控制系统在不同形式阵风激励(1-cos离散阵风、正弦阵风和Dryden湍流)下的阵风减缓效果。风洞试验中采用阵风发生器产生的正弦阵风,在不同风速和阵风频率下进行了阵风减缓试验。仿真与试验结果表明,CCS对各种阵风激励均有较好的阵风减缓性能。FFCS与FBCS相比,FFCS的鲁棒性和控制效果均优于FBCS。FFCS与CCS相比,FFCS的减缓效果越好,CCS越难取得明显的效果提升,而这种效果的提升是通过在FFCS上增加FBCS来实现的。
摘要:阵风减缓对于改善飞机飞行品质、降低阵风载荷具有重要意义,利用飞机响应(反馈控制)和阵风扰动信息(前馈控制)来改善阵风减缓效果值得重视。本文设计并分析了一种由前馈控制系统(FFCS)和反馈控制系统(FBCS)组成的组合控制系统(CCS),同时通过数值模拟和风洞试验分别对CCS、单一FFCS和单一FBCS的阵风减缓效果进行分析比较。以柔性机翼为研究对象,通过数值模拟分析了3种控制系统在不同形式阵风激励(1-cos离散阵风、正弦阵风和Dryden湍流)下的阵风减缓效果。风洞试验中采用阵风发生器产生的正弦阵风,在不同风速和阵风频率下进行了阵风减缓试验。仿真与试验结果表明,CCS对各种阵风激励均具有较好的阵风减缓性能。FFCS与FBCS相比,FFCS的鲁棒性和控制效果均优于FBCS。FFCS与CCS相比,FFCS的减缓效果越好,采用CCS在FFCS上增加FBCS所获得的效果越难得到明显的改善。
湍流和阵风会导致施加在飞机结构上的空气动力和力矩发生变化,从而导致乘客不适,并且结构上必须设计能够支撑的动态载荷。通过设计阵风载荷缓解 (GLA) 系统,可以实现两个目标:第一,实现更高的乘客舒适度;第二,减少动态结构载荷,从而可以设计更轻的结构。本文提出了一种设计组合反馈/前馈 GLA 系统的方法。该方法依赖于多普勒激光雷达传感器测量的飞机前方的风廓线,并基于 H ∞ 最优控制技术和离散时间预览控制问题公式。此外,为了允许在这两个目标之间进行设计权衡(以实现设计灵活性)以及允许指定稳健性标准,引入了使用多通道 H ∞ 最优控制技术的问题变体。本文开发的方法旨在应用于大型飞机,例如运输机或公务机。模拟结果表明,所提出的设计方法在考虑测量的风廓线以实现上述两个目标方面是有效的,同时确保了设计灵活性以及控制器的稳健性和最优性。
5.4 在 1.4Hz 激励下 4 ◦ 阵风激发的机翼根应变时间历史... 54 5.5 H 2 闭环机翼根应变对阵风激励的响应时间历史... 55 5.6 H 2 闭环外侧副翼偏转对阵风激励的时间历史 55 5.7 H 2 闭环内侧副翼偏转对阵风激励的时间历史... 56 5.8 阵风激励下 H ∞ 闭环翼根应变响应的时间历史 56 5.9 阵风激励下 H ∞ 闭环外侧副翼偏转的时间历史 57 5.10 阵风激励下 H ∞ 闭环内侧副翼偏转的时间历史 57 5.11 加权和加权翼根应变的 Bode 幅值图 . . . . . . . . . 59 5.12 采样时间为 0 . 01 s 的 H 2 合成 . . . . . . . . . . . . . . . 59 5.13 采样时间为 0 . 01 s 的 H ∞ 合成 . . . . . . . . . . . . . . . . . . . . . . . 60 5.14 标准化翼根应变对标准化阵风激励的响应的 Bode 图 60 5.15 标准化外侧副翼对标准化阵风激励的响应的 Bode 图 61 5.16 标准化内侧副翼对标准化阵风激励的响应的 Bode 图 61 5.17 H 2 闭环翼根应变对阵风激励的响应时间历史 . 62 5.18 H 2 闭环外侧副翼偏转对阵风激励的时间历史 62 5.19 H 2 闭环内侧副翼偏转对阵风激励的时间历史 . 63 5.20 H ∞ 闭环翼根应变对阵风激励的响应时间历史 63 5.21 H ∞ c 的时间历史
这项工作证明了一种新型横向阵风发生器的可行性,该发生器能够产生可控的时变阵风,而不会增加流动设施大面积内的湍流水平。新的阵风发生器概念基于涡流发生器阵列 ( VGA ),该阵列沿着设施测试段的某一给定流向位置的一面墙壁布置。使用这种装置,可以在风洞中演示阶梯式阵风和幅度为自由流速度 5.7% 的正弦阵风。对于 10 m ∕ s 的自由流速度,正弦阵风在自由流方向上产生几乎纯谐振动,角度为 3.25 度,频率为 2 Hz。简化的涡流阵列模型被证明是设计新型阵风发生器的可行工具。本研究重点展示 VGA 阵风发生器的概念,同时将发生器的设计优化和阵风强度和均匀性的极限探索留待未来工作。
摘要。飞机的结构尺寸将受到阵风、机动和地面载荷的显著影响。自适应载荷减轻方法(关键词:1g-wing)有望降低最大载荷,从而减轻结构重量。为了适当分析此类载荷减轻技术,需要采用多学科方法。为了实现这一目标,应用了阵风遭遇模拟的流程链,使用高保真方法对空气动力学、结构动力学和飞行力学学科进行模拟,这些学科在时间域中耦合。在具有和不具有副翼偏转的通用运输机配置的多学科模拟中,介绍了垂直阵风对机翼和水平尾翼上的合力、力矩、载荷分布的影响。
摘要:阵风、机动和地面载荷对飞机的结构尺寸有显著影响。自适应载荷缓解方法(关键词:1g 机翼)有望降低最大载荷,从而减轻结构重量。为了正确分析此类载荷缓解技术,需要采用多学科方法。为了实现这一目标,应用了阵风遭遇模拟的流程链,使用高保真方法对空气动力学、结构动力学和飞行力学等学科进行耦合,这些学科在时间域中耦合。在对具有和不具有副翼偏转的通用运输机配置进行多学科模拟时,介绍了垂直阵风对机翼和水平尾翼上的合力、力矩、载荷分布的影响。
引言 在过去的几十年里,空军一直是所有危机或冲突中的第一军事力量,从福克兰群岛到海湾,从波斯尼亚到科索沃,从阿富汗到利比亚,以及最近的马里、中非共和国和伊拉克。军事航空无疑是当今最具战略意义的武器,无论是在战斗力方面还是在关键技术方面。在现代战争中,从第一天起就必须占据空中优势,这样才能安全有效地进行空对地和空对海作战。在非对称和反叛乱冲突中,空军也始终处于军事努力的最前线,其灵活性和火力有助于确保盟军获胜。9·11事件表明,在和平时期,必须使用易于部署的控制和防空资产来确保国家领空的安全。那些希望在世界舞台上保持领先地位的国家所制定的防御战略表明了空中力量在现代战争中的决定性地位。阵风战机具有“全能”能力,是越来越多政府选择的能力方法的正确答案。它完全符合以最少的飞机执行最广泛任务的要求。阵风战机参与永久性“快速反应警报”(QRA)/防空/空中主权任务、外部任务的力量投射和部署、深度打击任务、地面部队的空中支援、侦察任务、飞行员训练飞行和核威慑任务。空军单座型 RAFALE C、空军双座型 RAFALE B 和海军单座型 RAFALE M 具有最大程度的机身和设备通用性,以及非常相似的任务能力。
引言 在过去的几十年里,空军一直是所有危机或冲突中的第一军力,从福克兰群岛到海湾,从波斯尼亚到科索沃,从阿富汗到利比亚,以及最近的马里、中非共和国和伊拉克。军事航空无疑是当今最具战略意义的武器,无论是从战斗力还是关键技术方面来说都是如此。在现代战争中,空中优势从第一天起就必不可少,这样才能安全有效地进行空对地和空对海作战。在非对称和反叛乱冲突中,空军也始终处于军事行动的最前线,其灵活性和火力有助于确保盟军获胜。9·11事件表明,在和平时期,必须使用易于部署的控制和防空资产来确保国家领空的安全。空军在现代战争中的决定性地位体现在那些希望在世界舞台上保持领先地位的国家所制定的国防战略中。阵风战机具有“全能”能力,是越来越多政府选择的能力方法的正确答案。它完全符合以最少的飞机执行最广泛任务的要求。阵风战机参与常态“快速反应警报”(QRA)/防空/空中主权任务、外部任务的力量投射和部署、深度打击任务、地面部队的空中支援、侦察任务、飞行员训练架次和核威慑任务。空军的单座型阵风战机C、空军的双座型阵风战机B和海军的单座型阵风战机M具有最大机身和设备通用性,以及非常相似的任务能力。