MIL-STD-1553 提供了第二种连接到主总线的方法,称为变压器耦合。变压器耦合连接利用阻抗匹配耦合变压器以及隔离电阻来连接到总线。耦合变压器和隔离电阻的作用是,总线内部短截线的阻抗与特性阻抗相匹配。提供总线内部匹配的阻抗将减少短截线的二次反射,并将大部分信号功率传送到总线。耦合变压器的第二个好处是,该比率使得有效短截线阻抗增加 2 到 1 倍(基于使用匝数比为 1.41:1 的变压器)。图 4 显示,与直接耦合连接相比,变压器耦合连接的有效短截线阻抗显著增加。在保持多点总线上传输线的保真度方面,这种总线耦合器的使用是 MIL-STD-1553 的主要架构优势之一。
通过控制施加到不同设备的电压,可以控制速度、热量和许多参数。控制电压的方法有很多,其中一种就是脉冲宽度调制技术。使用脉冲宽度调制可以改变占空比。脉冲宽度调制输出可以通过不同的电路获得。这里,脉冲宽度调制块有一个寄存器、计数器、比较器和 RS 锁存器。这些块是使用 QUARTUS-II 综合开发环境中的 VHDL 合成的,并在 Altera FPGA 板上进行仿真和下载。通过改变寄存器值可以改变开启时间,通过计数器值可以改变关闭时间。使用 Modelsim 软件模拟 PWM 波形输出。然后可以通过改变 FPGA 板中的 LED 强度来验证 PWM 波形。在这个项目中,使用 PWM 技术控制直流电机的速度。L293D 电机 d。将来,这种 PWM 技术可用于 MPTT 的阻抗匹配,以从太阳能电池板中提取最大功率。
摘要 - 研究表明,使用存根载荷技术,UWB-MIMO天线元件之间的相互耦合减少。提出的2×2 UWB天线几何形状由两个圆形的单极辐射器组成,其部分地面可与完美的阻抗匹配。存根为20 mm×0.2 mm,在接地平面的两个天线元件之间插入以改善分离率。脱钩的存根导致相互耦合的降低少于20 dB。以10 GHz的选定频率以10 GHz的频率测量确认了全向辐射模式。出现了不同的MIMO天线度量,例如通道容量损失(CCL),平均有效增益(MEG),总活动反射系数(TARC),包膜相关系数(ECC)和表面电流。设计注意事项的详细信息以及仿真和测量结果进行了介绍和讨论。所提出的MIMO天线阵列可以非常适合UWB应用。
已经针对该系统的不同组件进行了文献调查。表一概述了功率转换阶段、高效功率转换的关键组件以及针对每个部分的相关文献调查。最近的调查主要关注功率转换技术 [4], [6], [7]、整流器拓扑 [7], [8] 或从网络角度来看的 RFEH [5], [9]。然而,在已报道的评论中,RFEH 的天线设计并未被视为关键参数。例如,虽然一些调查从整体角度考虑了天线的带宽和效率,或针对小型化或可穿戴天线等小众应用的特定天线设计 [8], [10],但尚未对某些天线参数对功率接收和转换效率的影响进行详细分析。 58 本综述回顾了整流天线中的天线设计技术,旨在区分 RFEH 和 WPT 特定的天线设计挑战与通信的标准天线设计。从两个角度比较天线,即端到端阻抗匹配和辐射特性,每个角度都进行比较。
摘要:为了回应对射频识别纺织品的日益增长的兴趣,作者通过引入RFIDTEX概念提出了一种新的方法来设计射频标识(RFID)设备。电感回路的耦合系统与RFID界面在Textronic结构中实现,以将应答器拆分为两个独立制造的组件。然后,两个模块都可以轻松地集成到RFIDTEX标签中。提出的模拟和测量结果证明了以蜿蜒的偶极子的形式制造相对较小的天线的概念,然后再用一个螺纹缝制,然后可以通过无镀锌连接的耦合系统将其连接到RFID芯片。所达到的参数清楚地表明,标签可以与读/写设备以及其两个部分之间的耦合正确通信,并且在这种情况下可以使用阻抗匹配。在纺织厂站点上使用电子识别标签和对环境条件影响的抵抗力提高的抵抗力的可能性是RFID设备设计的拟议方法的主要优势。作者提出的RFIDTEX应答器想法受到专利NO PL 231291 B1的限制。
摘要 — 本文报道了一种新型差分折叠混频器,该混频器采用多重反馈技术来提高性能。具体而言,我们引入了电容交叉耦合 (CCC) 共栅 (CG) 跨导级,通过提高有效跨导来改善低功耗下的噪声系数 (NF),同时通过抑制二阶谐波失真来提高线性度。通常,CCC 产生的环路增益会增加三阶互调 (IM3) 失真,从而降低输入参考三阶截点 (IIP3)。在这里,我们建议在 CCC CG 跨导器中加入正电容反馈和第二个电容反馈,不仅可以抑制 IM3 失真电流,还可以增加输入晶体管的设计灵活性。此外,正反馈还通过灵活的设计标准改善了输入阻抗匹配、转换增益和 NF。采用 0.13 µ m 工艺制作的原型机,所提出的混频器工作在 900 MHz,在 1 V 电压下功耗为 4 mW。测得的双边带 (DSB) NF 为 8.5 dB,转换增益 (GC) 为 18.4 dB,IIP3 为 + 12.5 dBm。
摘要圆形微带贴片天线(CMPA)的增益和带宽增强的设计已通过使用用作超级材料的矩形金属板中的圆形凹槽进行了提出。提出的概念是独特的,并且简单地作为增强增益和带宽的灵活方法。矩形形状的泡沫间隔剂已用于提供机械支撑,以放置优化的凹槽蚀刻矩形金属板超材。拟议的天线提供了约35.5%的阻抗匹配带宽在8.45 GHz至12 GHz之间的带宽,总带宽为3.55 GHz,而传统的圆形贴片为9.95 GHz,几乎显示了势不足的带宽(480 MHz)的4.8%,大约显示了4.8%的抗衡。峰值增益为7dbi。除了增强的带宽特征co-pol。在整个操作频段中保持10DBI的峰值增益。与常规CMPA相比,实现了3DBI增益。对于实验验证,已经使用市售介电底物制造了一组天线原型。测得的结果显示与模拟预测相似。关键字:带宽,圆形贴片天线,圆形凹槽,超隔板
在等离子体处理中,功率输送与非线性负载的匹配是一项持续的挑战。微电子制造中使用的等离子体反应器越来越多地采用多频率和/或脉冲方式,从而产生非线性且在许多情况下非稳态的电气终端,这可能会使功率与等离子体的有效耦合变得复杂。对于脉冲电感耦合等离子体尤其如此,其中等离子体的阻抗在启动瞬态期间可能会发生显著变化,并经历 E – H(电容到电感)转换。在本文中,我们讨论了使用固定组件阻抗匹配网络对脉冲电感耦合等离子体(Ar/Cl 2 混合物,压力为数十毫托)进行功率匹配的动态计算研究的结果及其对等离子体特性的影响。在本次研究中,我们使用了设定点匹配,其中匹配网络的组件在脉冲周期的选定时间提供最佳阻抗匹配(相对于电源的特性阻抗)。在脉冲早期匹配阻抗使功率能够为 E 模式供电,从而强调电容耦合和等离子体电位的大偏移。这种早期功率耦合使等离子体密度能够更快地上升,而在脉冲后期的 H 模式中不匹配。早期匹配还会产生更多能量离子轰击表面。在脉冲后期匹配会降低 E 模式中耗散的功率,但代价是降低等离子体密度的增加速度。
RF简介:RF范围,皮肤效应,行为和等效电路,如R,L,C,高RF。传输线理论,反射系数,史密斯图计算,阻抗匹配,S-参数。(L-7&T-2)RF设计中的基本概念:RF DC设计。六边形无线通信标准,非线性,谐波,增益压缩,脱敏,交叉调制,间调制失真(IMD),输入截距(IIP3&iip3&iip2),符号间干扰。噪声,主动设备的噪声分析。(L-8&T-2)RF系统中的基本块及其VLSI实施:RF的MOSFET行为,晶体管和香料模型的建模,HEMT和MESFET等高速设备,BICMOS技术,BICMOS技术,在高频及其单声道实现的寄生元素及其单层实现者的集成寄生元素,低噪声效果和低噪声器设计。(L-10和T-4)振荡器:基本VCO拓扑,相位噪声,噪音功率权衡。谐振器较少的VCO设计,GHz频率混合器设计和问题,射频综合:PLL,各种RF合成器体系结构和频率分隔线。(L-9&T-3)反式接收器体系结构:TRF接收器,杂化接收器,同伴接收器,不同的接收器拓扑,RF接收器体系结构及其设计问题,集成的RF过滤器,IC应用程序,IC应用程序和案例研究,用于DECT,GSM和蓝牙。(L-8&T-3)
摘要 — 本文提出了一种高效宽带毫米波 (mm-Wave) 集成功率放大器 (PA),该放大器采用了基于低损耗槽线的功率组合技术。所提出的基于槽线的功率合成器由接地共面波导 (GCPW) 到槽线的过渡和折叠槽组成,可同时实现功率合成和阻抗匹配。该技术提供了一种宽带并联-串联合成方法,可增强毫米波频率下 PA 的输出功率,同时保持紧凑的面积和高效率。作为概念验证,我们在 130 nm SiGe BiCMOS 后端 (BEOL) 工艺中实现了紧凑的四合一混合功率合成器,从而使芯片面积小至 126 µ m × 240 µ m,测量的插入损耗低至 0.5 dB。3 dB 带宽超过 80 GHz,覆盖整个 G 波段 (140-220 GHz)。基于此结构,采用 130 nm SiGe BiCMOS 技术制作了高效毫米波 PA。三级 PA 实现了 30.7 dB 的峰值功率增益、40 GHz 的 3 dB 小信号增益带宽(从 142 GHz 到 182 GHz)、测量的最大饱和输出功率为 18.1 dBm,峰值功率附加效率 (PAE) 在 161 GHz 下为 12.4%。极其紧凑的功率合成方法使核心面积小至 488 µ m × 214 µ m,单位芯片面积的输出功率为 662 mW/mm 2 。