DVCS6100 是 Becker Avionics 最新的数字音频选择器和对讲系统。设计时同时考虑了旋翼和固定翼飞机,Becker Avionics 充分利用了其在航空航天工业音频应用方面的成熟技术。通过使用面向未来的 DSP 和微控制器技术,该系统符合当今最新的技术和质量标准。它采用了模块化系统设计理念,以在系统集成期间实现最大灵活性,并确保在飞行操作期间实现最佳性能和可靠性。DVCS6100 由以下部分组成:一个远程电子单元 REU6100,最多 6 个音频控制单元 ACU6100 或 ACU6101,可选对讲放大器,最多可容纳 12 名乘客。最多 6 个音频控制单元中的每一个都通过双冗余 CAN 总线将所选开关和旋转控制器的状态传输到远程电子单元。阻抗匹配和音频数字信号处理在 REU6100 内进行。 EM6100 是存储设备(可选)。它是一个连接到 REU6100 的小型设备,用于存储系统配置。允许轻松进行现场更换,而无需在工作台上重新配置系统。在系统集成或操作员现场使用期间,DVCS6100 的配置可通过 Becker Avionics 提供的特殊配置软件工具轻松实现。为确保操作期间的最大可靠性和安全性,系统具有特殊的安全模式:● 从属模式:如果飞行员或副飞行员 ACU 完全丢失,则通过将选择开关设置为并行切换控制
摘要:随着民用和军事领域的通信技术的快速发展,电磁波引起的电磁辐射污染问题变得特别突出,并带来了巨大的伤害。迫切需要探索有效的电磁波吸收材料来解决电磁辐射污染的问题。因此,各种吸收材料已经迅速发展。中,具有出色磁性特性的铁(Fe)磁吸收颗粒材料,高Snoek的截止频率,饱和磁化和居里温度,表现出极好的电磁波损失能力,是吸收吸收材料的一种承诺。然而,铁磁颗粒的阻抗匹配,易于氧化,高密度和强烈的皮肤作用的缺点。通常,形态结构设计和多组分材料复合材料的两种策略用于改善基于Fe的磁吸收剂的微波吸收性能。因此,在微波吸收中已广泛研究了基于Fe的微波吸收材料。在这篇综述中,通过近年来对基于Fe的电磁吸收材料的报告摘要进行了审查,从详细讨论了基于Fe和Fe的复合吸收器的不同方面的详细讨论基于Fe的吸收材料的研究进度,并进行了基于Fe的吸收材料的研究进度,并进行了制备方法,吸收培养基和基于铁的吸收材料的吸收机制。同时,还阐述了基于Fe的吸收材料的未来开发方向,为有效的电磁波吸收材料的研究和开发提供了参考,具有较强的吸收性能,频率带宽,轻质重量和较薄的厚度。
摘要 - 报告了基于标准40 nm CMOS技术的量子应用的低温宽带低噪声放大器(LNA)。LNA规范是从4.2 K处的半导体量子位的读数中得出的,其量子信息信号的特征是相位调节的信号。为了实现宽带输入匹配阻抗和低噪声图,可以利用输入晶体管的闸门电容。目标是将电阻和电容载荷与源电感变性的共同源阶段的输入阻抗匹配。电容载荷是由LC平行箱产生的,其谐振频率低于工作频率。实现的非构体等效电容已被证明是对输入阻抗匹配的好处。载荷的电阻部分是由cascode阶段的跨传导提供的。将电感器添加到cascode晶体管的门中以抑制其噪声,而具有两个共振频率的基于变压器的谐振器则用作第一个阶段的负载,从而扩展了操作带宽。提出并分析了LNA的低温温度操作的设计注意事项。LNA在整个频段(4.1-7.9 GHz)中实现了35±0.5 dB的测得的增益(S 21),回报损失> 12 dB,NF为0.75–1.3 dB(4.1-7.9 GHz),在室温下具有51.1兆瓦的功耗,同时显示为42±3.3 dB和NF的幂均值,均为0.2 db,Nf of 0.23-0.23-0.65 d.65 d.65 d.65 d.65 d.65 d.65 d.65 d.65 d.65 d d d db。在4.6至8 GHz之间。据我们所知,这是基于在4 GHz以上工作的批量CMOS过程的第一个报告,该过程在房间和低温温度下均显示出亚1-DB NF。
摘要近年来,范德华(Van der Waals)材料中表面声子极地(SPHP)的激发受到了纳米光子学界的广泛关注。alpha相钼三氧化物(α-MOO 3),一种天然存在的双轴双曲晶体,由于其在不同波长带的三个正交指导下支持SPHP的能力(范围10-20 µM),因此出现是一种有前途的极性材料。在这里,我们报告了大面积(超过1 cm 2尺寸)的制造,结构,形态和光学IR表征,α -moo 3多晶膜通过脉冲激光沉积沉积在熔融二氧化硅底物上。由于随机晶粒分布,薄膜在正常发生率下未显示任何光学各向异性。但是,提出的制造方法使我们能够实现单个α相,从而保留与α -moo 3片的语音响应相关的典型强分散体。报告了IR光子学应用的显着光谱特性。例如,在1006 cm -1处具有极化的反射峰,动态范围为∆ r = 0.3,共振Q因子在45°的入射角下观察到高达53的共振Q。此外,我们报告了SIO 2底物的阻抗匹配条件的实现,从而导致独立于极化的几乎完全完美的吸收条件(R <0.01)在972 cm-1处,该条件可维持以较大的入射角维持。在此框架中,我们的发现似乎非常有前途的,对于使用远场检测设置,用于有效和大规模的传感器,滤镜,过滤器,热发射器和无标签的生物化学传感设备,用于进一步开发无IR线印刷膜,可扩展的膜,用于高效和大规模的传感器,过滤器,热发射器和无标签的生化感应设备。
Instituto de Acústica, CSIC。Serrano 144, 28006 Madrid (西班牙), iacpc24@ia.cetef.csic.es 摘要:由于尺寸与波长之比的限制,被动系统本质上无法在低频范围内提供吸收。另一方面,主动控制系统在低频下工作。然后可以设想一种混合被动-主动系统,它通过主动控制补充被动吸收器的低频范围。如果配置正确,这种混合系统能够提供宽带吸收。1.简介 主动控制系统可以与传统被动元件相结合,以提供宽带吸收,包括低频 [1-2]。被动吸收器可以由气腔前面的多孔层和不透水端壁组成。主动系统包括误差传感器、执行器和自适应控制器。如果误差传感器是被动层后面的麦克风,则主动系统会在气腔输入处释放压力 [3]。这通过压力释放提供主动控制器。另一方面,如果在气腔中有两个麦克风和一个反卷积电路,则可以分别测量入射和反射分量。取消气腔中反射分量的主动系统称为阻抗匹配器 [4]。主动系统的性能取决于被动元件的设计。Cobo 等人[5-6] 表明,当被动元件的阻抗减小时,阻抗匹配条件的主动吸收效果更佳。否则,只要被动元件设计得当,压力释放条件的效果会更好。因此,在实施混合被动-主动吸收系统之前,有必要通过适当的模型预测其性能。本文讨论了压力释放条件下的混合被动-主动吸收系统的理论建模和实验验证。被动元件可以是多孔层或微穿孔板 (MPP)。2.平面波混合吸收模型让我们考虑一个管道,其中平面波向下和向上传播。左侧某处的主要源在每一层产生入射平面波 A i 和反射平面波 B i ,如图 1 所示。管道另一侧的被动吸收器可以是多孔层,其声阻抗为 Z a ,传播常数为 Γ a ,厚度为 d ,也可以是 MPP ,其
调节(或有限的速度)[7],[8],它可以实现广泛的应用和物理现象,例如时间逆转[8],[9],时间折射[10] - [12] - [12],基本界限[13],光束分裂[14],光束生成[15],光照射[16],旋转[16] [18],完美的吸收[19],参数放大[20],时间阻抗匹配[21]和时间瞄准[22]。近年来,该制度还经过古典物理学[23] - [27]。The modulation velocity can also vary uniformly, ranging from subluminal to superluminal speeds [28] – [32] , which introduces additional novel phenomena, including Doppler shifting [29] , [33] , [34] , magnetless nonreciprocity [35]–[37] , space-time reversal [38] , dynamic diffraction [39] ,不对称带隙[29],[40],[41]和分离[42],光偏射[43] - [45],量子宇宙学类似物[46]和减震波的产生[47]。最后,调制速度可以是不均匀的,加速度可以实现现象,例如移动镜[48],光子发射[49],chirping [50],光弯曲[51]和重力类似物[52] [52]。GGSTEM包括几个基本结构,包括界面,板,时空晶体和时空超材料。接口充当所有GSTEM的核心构建块[53],[54]。平板是通过堆叠以相同速度移动的两个接口[55],[56]来形成的。空间时间晶体是由具有不同特性的平板的定期重复而产生的[29]。纸张的组织如下。接下来,最后,通过将这些晶体的空间和时间周期减少到亚波长度和子周期量表[29],[40]来创建时空元素。在这里,我们介绍了一个新的基本类别结构,即时空楔。通过将两个时空接口与不同的速度相结合,形成了一个时空楔形,这是对应于时空图中的楔形或三角形结构的。在纯粹的空间表示中,作为横坐标和特性(例如折射率或电势)作为顺序的空间,这些楔子对应于收缩(闭合楔形)或扩展(开放楔形)板。第2节介绍了时空楔形的概念,作为召开空间楔形的扩展。然后,第3节提出了所有可能类型的时空楔形物的策略。
第一周:RFIC 和通信电子简介,(RF 微电子学书籍和高频集成电路书籍的第 2 章) 第二周:器件建模(MOS 和 BJT RF 器件模型、晶体管操作、晶体管截止频率),(高频集成电路书籍的第 4 章) 第三周:器件建模、无源元件(电感器、电容、电阻性能和 RF 模型,(高频集成电路书籍的第 4 章和 RF 微电子学书籍的第 7 章) 其他一些参考文献: “MOS 晶体管的操作和建模”Yannis Tsividis、Mc-Graw Hill “用于 RFIC 设计的 MOS 晶体管建模”,Enz 等,IEEE Transaction on Solid- State Circuits,第 35 卷,2000 年 第 4 周:匹配网络的阻抗匹配和品质因数, 第五周:放大器的匹配网络、L 匹配、Pi 匹配、分布式放大器、反馈网络第六周 低噪声放大器(LNA)设计,(《射频微电子学》一书的第 5 章和《高频集成电路》一书的第 7 章) 第 7 周:带 CS、CG 级、具有电感衰减的 LNA,(《射频微电子学》一书的第 5 章和《高频集成电路》一书的第 7 章) 第 8 周:电路噪声分析(热噪声/闪烁噪声)噪声系数 第 9 周:线性和非线性(IM3- IM2)1dB 压缩、互调失真、截取点、交叉调制。期中考试 I 第 10 周:混频器和频率转换(混频器噪声)、无源转换、有源转换、I/Q 调制 PPF,(《高频集成电路》一书的第 9 章、《射频微电子学》一书的第 6 章) 第 11 周:不同的发射器/接收器架构。外差、同差、镜像抑制比 第 12 周:VCO 和振荡器:VCO 基础和基本原理、振荡器的反馈视图、交叉耦合振荡器(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章)。 第 13 周:具有宽调谐范围和变容二极管 Q 值限制的压控振荡器、相位噪声概念和分析、低噪声 VCO 拓扑(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章) 期中考试 II 第 14 周:用于 SNR、BER、EVM 和不同调制的收发器架构(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章) 第 15 周:具有不同通信调制/解调的收发器架构和设计示例、注意事项/讲座 29 30 /发射机和接收机的一般考虑
1 阿米蒂空间科学与技术研究所学生 2 阿米蒂空间科学与技术研究所教授 摘要 电子回旋共振 (ECR) 推进器正成为一种有前途的高效航天器推进技术,利用电子回旋共振现象产生推力。这篇全面的评论综合了该领域的关键进步、设计策略和持续挑战。ECR 推进器通过使用微波能量加热磁化等离子体中的电子来运行,从而产生高电离率和有利的推力功率比。与传统推进系统不同,ECR 推进器具有显着优势,包括更高的比冲和更低的燃料消耗,使其成为长时间太空任务的理想选择。本文深入探讨了 ECR 推进器设计的各个关键方面,例如天线配置、气体注入方法和磁场优化,重点介绍了这些因素如何影响整体性能。它还讨论了解决效率、寿命和功率传输等问题的最新实验结果和理论模型。此外,该评论还探讨了未来的发展方向,强调需要在材料和自动阻抗匹配方面取得进步,以提高可靠性和推力产生能力。通过这一分析,本文旨在全面了解 ECR 推力器,强调其成为未来太空探索有竞争力和可持续选择的潜力。关键词:电子回旋共振 (ECR) 推力器、等离子推进、电力推进技术、微波等离子体加速、推力器中的磁场配置、离子加速简介电子回旋共振 (ECR) 等离子推力器于 20 世纪 60 年代首次推出,利用电场和磁场加速等离子体,为航天器提供推力。与传统推力器不同,ECR 推力器无需电网,只需要一个电源,这使得它们在太空推进领域具有潜在的颠覆性作用 [4,10,14]。最近的进展主要集中在解决过去的实验限制、提高测量精度和优化各种推力器参数。等离子体物理学涵盖了在电离气体中观察到的各种现象,其应用范围涵盖自然现象、聚变研究和工业过程[22,30,35]。尽管存在这种多样性,但等离子体的本质可以描述为带电粒子和中性粒子在电、磁和电磁相互作用影响下的集体行为。在工业等离子体社区中,等离子推力器社区专注于开发用于