太空资源利用已是大势所趋。虽然存在一些法律障碍,但并非不可逾越。《外层空间条约》(OST)第二条禁止占用资源的规定,并不适用于开采的资源,这是第二条的最合理解释,也是几乎所有国家和绝大多数学者的观点。《月球协议》并未成为太空资源利用的障碍,因为该协议尚未被许多国家采用(主要航天国家均未采用)。相比之下,包括美国在内的相当一部分主要航天国家签署的《阿尔忒弥斯协议》对太空资源利用持支持态度。美国、卢森堡、阿联酋和日本四部国家法律都体现了对太空资源利用日益增长的支持。原则上,国内法仅限于颁布法律的国家管辖范围内进行的活动,太空不受任何国家的主权管辖。但是,将国内法应用于太空采矿设施(没有任何正式的主权主张)——这对于实现外层空间的确定性和避免冲突至关重要——符合 OST 的文字和其基本目的。在研究了已颁布的四部太空资源利用法的目的和细节(也考虑到四个国家的法律体系)之后,本文对这四部法律进行了比较,并确定了太空资源利用公司在司法管辖权选择中应考虑的务实因素。本文的结论是,“旗帜选择”应更多地基于对商业环境、支持和政治因素的考虑,而不是四部法律之间的差异。
Artemis 计划包含一系列探索和科学任务。Artemis 不是传统意义上的 NASA“计划”,没有统一的领导和资金。相反,它是跨任务、资金线、理事会和合作伙伴关系的统一目标的广泛表达。Artemis 计划由拥有广泛商业和国际合作伙伴关系的 NASA 牵头,“将在月球上建立可持续的存在,为火星任务做准备”。2 Artemis 计划将包括月球轨道和月球表面的载人作业以及这些区域的无人机器人作业。作为 Artemis 计划的一部分,NASA 牵头的主要计划包括 Gateway、载人着陆系统 (HLS)、猎户座、太空发射系统 (SLS)、商业月球有效载荷服务 (CLPS)、舱外活动 (EVA) 和人类表面机动性 (HSM) 计划以及月球基地。每个计划都涉及商业和国际捐助。国际合作伙伴主导的行动可能包括欧洲大型物流着陆器 (EL3)、加压和非加压探测车、额外的机器人地面任务以及对地面栖息地的贡献。3,4,5,6 NASA 及其合作伙伴还在考虑旨在确保行动可持续性的其他行动,例如现场资源利用 (ISRU) 和支持行动的技术能力,包括电力、通信和着陆基础设施。这些要素共同构成了阿尔忒弥斯计划——这是人类有史以来最雄心勃勃的太空探索计划。
生命支持元件,并在停靠乘员舱时调节热控制。此外,ESM 还可用于携带额外的非加压有效载荷。ESM 依靠独特的四翼太阳能电池阵列,每个机翼由三个独立的面板组成,发射后将展开至 7 米长,从而使航天器的“翼展”达到 19 米。15,000 个太阳能电池产生的能量足以为两个家庭供电。四个阵列中的每一个都围绕两个轴转动,以便能够与太阳对齐以实现最大发电量。ESM 的外部覆盖有凯夫拉纤维,以防止微陨石和空间碎片造成的损坏。此外,航空电子设备等关键冗余系统位于模块的相对两侧。每个 ESM 都由 20,000 多个零件和部件组成,从电气设备到发动机、太阳能电池板、油箱和生命支持用品,包括大约 12 公里长的电缆。任务结束时,欧洲服务模块将在地球大气层中烧毁,而乘员舱将溅落到太平洋。 即将到来的阿尔忒弥斯任务的五个其他服务模块 空客已与欧空局签订合同,建造总共六个欧洲服务模块(ESM-1 至 6),欧空局正在向猎户座计划投资约 20 亿欧元。 第一个模块 ESM-1(命名为“Bremen”)正在等待即将到来的阿尔忒弥斯一号任务的发射。 ESM-1 于 2018 年 11 月交付给 NASA,并与猎户座乘员舱对接。 在俄亥俄州的 NASA 普拉姆布鲁克站设施对完全集成的航天器进行热真空测试后,欧洲于 2020 年 12 月正式将 ESM-1 移交给美国。 回到佛罗里达州的肯尼迪航天中心,它现在已集成在 SLS 火箭上,等待推出到发射台。 2021 年 10 月,第二艘 ESM 通过货机从不来梅飞往肯尼迪航天中心。它将成为 Artemis II 任务的一部分,该任务将搭载首批宇航员绕月飞行并返回地球。ESM-2 将与第二个猎户座乘员舱配对,并再次接受进一步的广泛测试,然后与 SLS 发射器集成——这个过程大约需要两年时间。Artemis II 目前计划于 2024 年发射。2020 年 5 月,ESA 和空客签署了建造第三艘 ESM 的合同。该模块将为 Artemis III 任务提供动力,该任务将见证第一位女性和第一位有色人种踏上月球。该模块的结构已经完成,子系统和设备集成正在空客洁净室中进行。目前预计这项任务最早不会在 2025 年完成。另外三台 ESM 将用于 Artemis IV 至 VI 任务,其中前两台是欧洲对国际门户的贡献,该空间站计划在月球轨道上组装。太空实验室、哥伦布、ATV:载人航天领域的丰富经验 在 ESM 的开发和建设过程中,空客不仅依靠来自欧洲十个国家(比利时、丹麦、法国、德国、意大利、荷兰、
2013 年 3 月 6 日,理事会以鼓掌方式再次任命现任总干事天野之弥,任期四年,自 2013 年 12 月 1 日起至 2017 年 11 月 30 日止。天野之弥总干事于 2009 年 7 月 2 日首次由原子能机构理事会选举产生。他获得了所需的三分之二多数票,成为原子能机构第五任总干事。天野之弥的对手包括南非的阿卜杜勒·萨马德·明蒂先生和西班牙的路易斯·埃查瓦里先生。在 2009 年 3 月举行的最后一轮投票中,天野之弥和明蒂成为仅剩的候选人,最终投票结果不分胜负。然而,选举任务随后落到了原子能机构大会上,该机构于 2009 年 9 月确认天野之弥为总干事,他的第一任期从 2009 年 12 月 1 日开始。
根据阿尔特弥斯计划,NASA 计划重返月球表面,这次是长期停留。阿波罗任务认为尘埃是月球表面作业面临的主要挑战。这包括从一点到另一点的旅行。人们一直在努力开发防止尘埃进入设备、使设备更耐尘和改善除尘效果的技术。然而,长时间在尘埃环境中有效运行仍然是一个悬而未决的问题。在这里,我们探讨了使用缆车、缆车和高空滑索在尘埃之上进行设备和材料转移以及人员远足。讨论了优缺点、潜在架构、推进和材料。还介绍了融入正在进行的阿尔特弥斯计划的步骤。
凯文·丹尼希 美国宇航局的搜救技术曾在地球上拯救了数千人的生命,在未来的月球和火星任务中,这些技术将得到增强,以确保宇航员安全返回。 美国宇航局的搜救 (SAR) 办公室正在开发系统并整合 GNSS,以支持阿尔忒弥斯月球任务。 登月、着陆和返回需要始终具备搜救能力。美国宇航局搜救办公室国家事务任务经理 Cody Kelly 在 1 月份的 ION 国际技术会议上表示,由于距离和不确定性,这意味着必须结合使用 GNSS 和其他地理定位技术,才能在极具挑战性的环境中寻找和营救宇航员。 “在[国际]空间站,你乘坐火箭回家的时间不超过 90 分钟。然而,月球离这里有三天时间,”他说。“通过任何通讯方式,火星离你有 21 分钟的路程,因此,地球上的任务控制中心能够在整个任务期间找到你变得尤为重要。”凯利负责所有载人航天搜救行动,并支持 SpaceX、波音和 Artemis/Orion 任务,他已经提供了专门的搜索和救援数据,用于在低地球轨道 (LEO) 着陆后定位载人航天舱和宇航员。凯利说,当宇航员开始在月球上行动时,由于地形崎岖,搜索和救援将极其困难。“在第一次阿波罗登月期间,宇航员并没有在相对平缓的倾斜地形上远离着陆器。然而,新兴技术计划将采用类似温尼贝戈的探测车,它将穿越着陆区以外的广阔区域,包括月球南极的广阔区域,”他说。
2020 年对所有人而言都是糟糕的一年,但在航天领域,我们因活动的连续性和对意大利来说非常重要的许多成功而脱颖而出。举几个例子,意大利工业在与欧空局签订的合同数量方面获得了回报,这是继 2019 年底在塞维利亚部长理事会会议上做出的承诺之后,当时意大利政府根据意大利航天局的提议,将对欧空局的贡献较上一期增加了 10 多亿欧元。这一增长基于对整个意大利航天工业价值链所达到的专业水平和生产能力的认识,因此我们可以在欧洲重要合同和项目方面争夺领导地位。事实上,我们在 2020 年结束时仅用一年时间就获得了相当于投资一半的回报:这是一个前所未有的结果!这清楚地表明意大利现在在国际航天领域发挥着领导作用。而且,由于 ASI 的持续参与,我们还继续实施国家倡议和预算,并强调了太空活动对支持 COVID 紧急情况的重要性,通过招标旨在确定用于远程医疗和远程教育的有用技术和服务的使用,在想法和建议方面获得了巨大的回报。2020 年也是意大利成为首批决定签署《阿尔忒弥斯协定》的国家之一的一年,以证明其愿意成为重返月球任务的重要合作伙伴并一直留在这里。即使在如此艰难的一年,在 ASI 的指导下,意大利太空领域也证明自己已经成熟并准备好接受“新太空经济”和创新研究的国际挑战,作为复苏、经济增长和可持续发展的手段。一个具有挑战性的卓越领域,服务于我们国家的未来!
随着阿尔忒弥斯计划致力于在月球轨道上建立门户并在月球上建立大本营,推进用于深空栖息地的新兴技术代表着朝着实现可持续未来探索任务迈出的下一步。无论最终目的地是低地球轨道、深空还是行星表面,保持机组人员生命、健康、快乐和高效所需的基本功能都适用于栖息地设计。然而,随着任务持续时间和与地球距离的增加,由于地面通信链路受到影响和补给机会受限,未来的太空栖息地将需要前所未有的自给自足水平来维持运营。为了应对这一挑战,自主设计方法和其他新兴技术,包括机器学习和人工智能 (AI)、人机协作、机器人技术、增材制造、闭环生命支持系统等,可以通过提高机载能力和减少对地球支持的依赖,为执行必要功能提供独特的解决方案。在此背景下,我们将这些技术统称为“智能系统”,该系统根据需要结合硬件、软件、人员和/或流程的元素,以满足所需的机载功能,而无需外部干预。本文概述了从通用深空作战概念 (ConOps) 中识别基本栖息地功能的过程,以及将这些功能与一种或多种可选实现方式相结合的策略。解决方案范围从地面指挥行动到机载手动或自动任务分配,再到各种自主支持的新兴技术的结合。然后提出了描述新兴技术设计解决方案的潜在优势的标准,以进行标称操作和异常响应,作为将其性能与当前最先进的方法进行比较的决策策略。最后,我们总结了一组精选的新兴技术,我们的同事目前正在评估这些技术的特定功能,这是 NASA“SmartHab”空间研究所 (STRI) 针对探索任务优化的栖息地 (HOME) 项目的一部分。
1967 年至 1979 年间,共出台了五项太空法条约。此后再无新条约,在可预见的未来也预计不会有新条约。虽然国际规则制定经历了数十年的僵局,但航天机构和商业公司开展的太空活动却一直在开辟新天地。结果是,尽管治理市场不断增长,但规则供应不足。显然存在制度创新的需求,这正在激发制度创业精神,甚至激发各种“治理供应商”之间的竞争。随着利益相关者和专家建立各种论坛(“治理中心”),建议、采用或游说一系列规则和标准,太空治理正趋向于多中心模式。结果是太空治理的分散化、渐进式演变。例如,2020 年 10 月,由美国牵头、由八个国家签署的《阿尔忒弥斯协定》旨在创建一个半独立的太空治理生态系统,有可能为子孙后代治理人类太空栖息地奠定基础。本文分别基于国际法、国际关系和政治经济学的去中心化治理、“碎片化”、“体制复合体”和“多中心治理”理论,认为在太空活动监管背景下,多中心治理既是不可避免的,也是有利的。本文认为,自下而上的太空治理发展将比自上而下的治理体系更全面、更灵活、更现代化。本文部分借鉴了埃莉诺·奥斯特罗姆的诺贝尔获奖研究,认为接受和促进多中心主义,并将更多的治理建设工作转向这个方向,同时减轻不利影响,将加强国家和非国家行为者的太空治理和太空探索。本文进一步否认太空治理是或应该以太空是“全人类的领域”、“人类的共同遗产”或“全球公域”为基础。