在评估工业化学物质,化妆品成分以及农药和杀菌剂中的活性物质中,代谢产物和降解物在哺乳动物中的毒性作用很少经过测试。为了动物福利和成本效益的利益,在评估这些类型的化学物质时需要进行动物测试的替代方法。在本报告中,我们回顾了用于吸收,分布,代谢和排泄(ADME)特性中各种类型的各种类型的现状,这些特性对于区分父母化合物的毒理学特征及其代谢物/降解产物通常很重要。审查是从广义上进行的,重点是QSAR和基于规则的方法及其对估计口服生物利用度,人类肠道吸收,血脑屏障渗透,血浆蛋白质结合,代谢和代谢和的适用性。这揭示了广泛而快速增长的文献和一系列软件工具。
每氯烷基酸(PFAAS),例如三氟乙酸(TFA),氟丙烷酸(PFPRA),丙烷磺酸(PFMS),丙酸(PFMS),丙烷基硫酸硫酸硫酸硫酸(PFROROUR)(PFROROUR)(PFROROUD), PFA的一个子集,其特征是每氟化碳(C F)的链长度为1-3。 1与它们的长链对应物相比,这些化学物质在历史上被忽略了,原因是它们的毒性较低和生物蓄积潜力。 然而,这些超短链PFAA的高极性,水溶性和持久性会导致在水生和植物环境中积累,从而增加水生生物和人类的暴露。 尤其是在全球范围内报道了TFA在水性,固体和生物矩阵中的报道,通常比长链PFAA的浓度高。 2除了直接来源(例如工业生产)外,TFA还据报道是流通制冷剂,农药和药物的降解产物。 3,4这些正在进行的排放,加上TFA的极端持久性和流动性,导致了迅速增加和潜在不可逆转的行星暴露。 2每氯烷基酸(PFAAS),例如三氟乙酸(TFA),氟丙烷酸(PFPRA),丙烷磺酸(PFMS),丙酸(PFMS),丙烷基硫酸硫酸硫酸硫酸(PFROROUR)(PFROROUR)(PFROROUD), PFA的一个子集,其特征是每氟化碳(C F)的链长度为1-3。1与它们的长链对应物相比,这些化学物质在历史上被忽略了,原因是它们的毒性较低和生物蓄积潜力。然而,这些超短链PFAA的高极性,水溶性和持久性会导致在水生和植物环境中积累,从而增加水生生物和人类的暴露。尤其是在全球范围内报道了TFA在水性,固体和生物矩阵中的报道,通常比长链PFAA的浓度高。2除了直接来源(例如工业生产)外,TFA还据报道是流通制冷剂,农药和药物的降解产物。3,4这些正在进行的排放,加上TFA的极端持久性和流动性,导致了迅速增加和潜在不可逆转的行星暴露。2
在两个电极之间传输。已经对锂离子电池进行了广泛的研究,但几个关键过程,主要与它们对电极的反应性有关,但仍有几个关键过程尚待充分说明。[1]没有电解质在锂离子电池的负石墨电极上本质上是稳定的,而可逆细胞化学反应强烈依赖于固体电解质相(SEI)的形成。SEI是一个NM薄的多相复合层,通常是在锂离子电池的第一个电荷/放电周期之后从电解质的降解产物中形成的石墨。尽管几十年前已经建立了关于SEI重要性的一般性感,但其形成和操作机制仍在激烈地进行辩论。尽管如此,通常观察到SEI的性能在很大程度上取决于使用的电溶剂。可行的锂离子电池电解质上的溶剂上的必需需求是高电介质构造,低粘度,较大的液体温度间隔和与所有细胞成分接触的稳定性。[1]
如今,人类多能干细胞 (hPSC) 经常用于基因编辑或细胞分选等极具挑战性的应用。在重新编程后,通过应用超低密度接种来产生新的 hPSC 系,使细胞处于压力之下。显然,需要一个稳定且精心组成的培养基环境来确保 hPSC 的存活和正常细胞生长,尤其是在压力实验条件下。细胞受益于恒定的营养和生长因子供应、稳定的 pH 值和低降解产物(例如乳酸或铵)的积累。在这里,我们开发了一种不含异种成分的新一代 hPSC 培养基,该培养基含有稳定的 FGF-2,可确保生长因子的稳定暴露水平,因此不仅可以提高 hPSC 的有效维持和扩增,还可以提高安全使用灵活喂养策略的可能性。当与额外的优化支持补充剂结合使用时,它可以提高细胞存活率和稳定细胞
摘要:在辐射下对钙钛矿设备中的界面特性的理解对于其工程至关重要。在这项研究中,我们展示了CSPBBR 3钙钛矿纳米晶体(PNC)和AU之间界面的电子结构如何受X射线,近红外(NIR)和紫外线(UV)光的照射的影响。可以通过使用低剂量X射线光电子光谱(XPS)来区分X射线和光线暴露的影响。除了金属铅(PB 0)的常见降解产物外,在暴露于高强度X射线或紫外线后,在PB 4F XPS光谱中鉴定出了新的中间分量(PB INT)。pb int分量被确定为单层金属Pb,是由钙钛矿结构破裂引起的pb诱导的pb的无电位沉积(upd)的单层金属Pb,允许PB 2+迁移。
硫唑嘌呤是活性代谢物 6-巯基嘌呤的前体药物,长期以来人们认为其主要作用机制是通过阻断诸如酰胺磷酸核糖基转移酶之类的酶来抑制嘌呤腺嘌呤和鸟嘌呤的合成,从而产生无功能的核酸链。从头嘌呤合成的中断会抑制 DNA 和 RNA 的合成,从而抑制淋巴细胞等快速生长细胞的增殖。淋巴细胞特别容易受到从头嘌呤合成抑制的影响,因为它们相对缺乏嘌呤合成的替代途径,即嘌呤“补救”途径,在该途径中核苷酸由核苷酸降解产物重新合成。然而,在过去的几十年里,人们提出了多种由各种硫唑嘌呤代谢物介导的其他作用机制,包括阻断 T 细胞活化和刺激 T 细胞凋亡。长期以来有报道称硫唑嘌呤对 T 细胞功能比对 B 细胞功能更有效,尽管缺乏有力的证据支持这一点,而且我们实验室最近的研究表明硫唑嘌呤可以抑制 B 细胞和 T 细胞增殖。
本研究对一种新型电池系统进行了全面的分析,该系统首次将由锂镍锰铝氧化物 (LiNi 0.9 Mn 0.05 Al 0.05 O 2 , NMA) 组成的高负载 (~5 mAh/cm 2 ) 无钴阴极集成到全固态电池中。银锗石 (Li 6 PS 5 Cl) 固体电解质与 99 wt% 硅薄膜阳极配合使用。在 0.05C 和 0.25C 的循环速率下,室温放电容量分别达到 > 210 mAh/g NMA 和 > 170 mAh/g NMA。在第一个循环期间进行的电化学阻抗谱测量详细说明了电解质降解的开始、硅阳极的锂化以及电荷转移动力学随电池电压的变化。拉曼光谱、傅立叶变换红外光谱和 X 射线光电子能谱用于识别循环过程中阴极电解液中形成的银锑矿降解产物,揭示碳酸锂是文献中经常提到的与氧气相关的降解的潜在来源。此外,制造过程中电池堆压力高(350 MPa),导致一些阴极颗粒破裂和粉碎。
杂质分析已成为药物开发,质量控制和调节性依从性的关键组成部分。在药物制造过程中,杂质(通过合成过程,赋形剂,残留溶剂或降解产物引入的杂质 - 对药物的安全性,功效和稳定性构成了重大挑战。杂质分析是一种系统的识别,表征和量化这些杂质的系统方法,对于确保制药产品符合严格的安全性和质量标准至关重要。本文探讨了杂质分析的最新趋势,重点是高级分析技术,包括色谱方法,光谱法和诸如LC-MS和GC-MS(例如LC-MS和GC-MS)。这些技术显着增强了痕量水平上杂质的检测和表征,从而有助于开发更安全,更有效的药物。对创新者的生物仿制药分析中的复杂性也进行了简要讨论,因为生物仿制药在使生物疗法更容易获得和负担得起的患者方面起着关键作用。此外,讨论了有关杂质分析的监管景观,强调了遵守国际准则以确保公共卫生和安全的重要性。
理解和消除电解质溶液的降解可以说是高能密度锂 - 空气电池发展的主要挑战。使用乙腈的使用提供了与当前最新的Glyme醚相当的循环稳定性,尽管已经对溶剂降解进行了广泛的研究,但尚未提出乙腈降解的机制。通过应用原位压力测量和异位表征来监测锂 - 空气电池中乙腈的降解,揭示了细胞内H 2 O浓度与理想化的电子/氧气比之间的相关性。在细胞和模型条件下,循环电解质溶液的表征将乙酰酰胺鉴定为主要降解产物。提出了一种新的退化途径,该途径合理化了乙酰胺的形成,识别H 2 O在降解过程中的作用,并确认氢过氧化物作为锂 - 空气细胞中关键的拮抗物种。这些研究强调了在探索锂 - 空气细胞化学时考虑大气气体的影响的重要性,并建议进一步探索氢过氧化物物种对锂 - 空气细胞降解的影响,可能会导致鉴定出更多效率的电解质溶剂。
摘要:木质素本质上是第二大的聚合物,在木质纤维素生物膜中生物量分馏期间也广泛产生。目前,尽管它代表了芳香剂的最丰富来源,但目前,大多数技术木质素都被燃烧而成,因此它是产生增值化合物的有前途的原料。木质素在组成中是异质的,并且是降解的顽固性,这种木质蛋白极大地阻碍了其使用。值得注意的是,微生物已经进化了特定的酶和专门的代谢途径,以降解该聚合物并代谢其各种芳族成分。近年来,已经设计了新的途径,可以建立能够有效地将木质素降解产物汇合到几个代谢中间体的工程微生物细胞工厂,代表合成各种有价值分子的合成起点。本综述重点介绍了基于系统代谢工程研究的最新成功案例(在实验室/飞行员量表上),旨在产生增值和特种化学品,非常强调CIS -CIS -ruconic Acid的产生,CIS -Muconic Acid是公认的塑料材料合成工业价值的基础。该全球废物流的升级承诺将解决可持续的产品组合,当将解决与流程规模相关的经济问题时,它将成为工业现实。