我们利用局部性的见解来约束一类广泛的隐形传态协议。在我们考虑的“标准”隐形传态协议中,所有结果相关的幺正态都是以测量结果的线性函数为条件的泡利算子。我们发现所有这类协议都涉及准备一个“资源状态”,该状态表现出对称保护拓扑 (SPT) 序,具有阿贝尔保护对称 G k = ( Z 2 × Z 2 ) k 。通过测量本体中相应的 2 k 个弦序参数并应用结果相关的泡利算子,将 k 个逻辑状态在链的边缘之间隐形传态。因此,这一类非平凡的 SPT 状态对于 k 个量子比特的标准隐形传态既是必要的,也是充分的。我们用几个例子说明了这个结果,包括簇状态、其变体和非稳定器超图状态。
四个贝尔态 | φ + ⟩ 、 | ψ + ⟩ 、 | φ − ⟩ 和 | ψ − ⟩ 是正交的,因此可以通过量子测量区分。因此,在收到 Alice 的变换量子比特(EPR 对中她的一半)后,Bob 可以测量两个量子比特并恢复 b 0 b 1 。因此,一个量子比特携带两个经典信息比特;这是超密集编码。我们在上面看到了一个例子,其中 Bob 使用图 2 中所示的逆贝尔电路从 | φ + ⟩ 恢复了 | 00 ⟩。
双向隐形传态是通过共享资源状态和本地操作与经典通信 (LOCC) 在双方之间交换量子信息的基本协议。在本文中,我们开发了两种看似不同的方法来量化非理想双向隐形传态的模拟误差,即通过归一化钻石距离和信道不保真度,并证明它们是等效的。通过将 LOCC 允许的操作集放宽到完全保留部分转置正性的操作集,我们获得了非理想双向隐形传态模拟误差的半正定规划下限。我们针对几个关键示例评估了这些界限:当根本没有资源状态时以及对于各向同性和沃纳状态,在每种情况下都找到了一个解析解。上述第一个示例为经典与量子双向隐形传态建立了基准。另一个示例包括由广义振幅阻尼通道对两个贝尔状态的作用产生的资源状态,我们为其找到了模拟误差的解析表达式,该解析表达式与数值估计一致(最高可达数值精度)。然后,我们评估了 [Kiktenko et al ., Phys. Rev. A 93 , 062305 (2016)] 提出的一些双向隐形传态方案的性能,发现它们不是最优的,并且没有超出上述双向隐形传态的经典极限。我们提出了一种可证明是最优的替代方案。最后,我们将整个开发推广到双向受控隐形传态的设置,其中有一个额外的协助方帮助交换量子信息,并且我们为该任务建立了模拟误差的半正定规划下限。更一般地,我们提供了使用共享资源状态和 LOCC 的二分和多分信道模拟性能的半正定规划下限。
无形的安全性Anveh Gunuganti maverickanvesh@gmail.com摘要:在弥合网络安全中虚拟威胁的流行时,这项研究旨在研究隐藏的安全措施及其效率,坚固性和结果。无形的安全性在为系统提供良好的安全性方面非常有效,与此同时,并不会给用户带来太大的烦恼。这项工作的方法基于文献综述和技术案例研究分析,其中包括芬兰,NHSNET和无线轮胎压力监测系统等主题。因此,调查结果强调,基于透明和晦涩的安全创新使安全性更强,而不会破坏用户的操作。在检测异常并有助于漏洞检测和预防时,行为分析可能非常有效。数据安全性,加密方法和常数更新对于数据保护和系统安全性很重要。以下是可以实施的操作建议列表,以增强可预见的未来系统的安全性:行为研究的合并ADA巩固数据安全无线系统的加密。进一步的研究应致力于改善行为分析和数据保护,进一步考虑无线安全问题,最后创建根据用户需求调整的解决方案。因此,本研究确立了在用户友好的体验中增强计算机系统安全性的无形安全性。关键字:隐形安全性,行为分析,数据加密,无线安全性,网络安全
Normagrup 致力于创新,这促使我们不断挑战极限。ZIP 就是我们努力的成果,它是一款突破性的产品,其独特的设计使其能够很好地适应周围环境。
摘要:隐形眼镜(CL)已成为一种非常流行的视力矫正手段,为全球数百万人提供了舒适感。然而,镜头上生物膜形成的持续问题引起了重大问题,导致各种眼部并发症和不适。这篇评论的目的是制定更安全,更有效的策略,以防止和管理CL上的微生物生物膜,从而改善眼睛健康和佩戴者的舒适性。考虑到这些考虑,本研究通过探索微生物粘附,细胞外聚合物物质的产生和透镜材料本身的特性来研究生物膜形成的复杂机制。此外,它强调了所涉及的微生物,包括细菌,真菌和其他机会性病原体,阐明了它们在透镜和其他与医疗器械相关的感染和炎症反应中的影响。超越了生物膜对CL的挑战,这项工作探讨了生物膜检测技术的进步及其临床相关性。它讨论了诊断工具,例如共聚焦显微镜,遗传测定和新兴技术,评估了它们识别和量化与生物膜相关感染的能力。最后,本文研究了当代策略和创新方法,用于管理和防止CL上的生物膜开发。总而言之,这篇综述为眼保健从业者,镜头制造商和微生物学研究人员提供了见解。关键词:假单胞菌,葡萄球菌,显微镜,遗传,微生物角膜炎它突出了生物膜与CL之间的复杂相互作用,为开发有效的预防措施和创新解决方案的基础,以增强CL安全性,舒适性和整体眼部健康。对CL上微生物生物膜的研究正在不断发展,就CL佩戴者而言,探索了几个未来的方向,以应对挑战并改善眼睛健康结果。
摘要 背景 过继细胞疗法,例如嵌合抗原受体 (CAR)-T 细胞疗法,已改善血液系统恶性肿瘤患者的治疗效果。目前,FDA 批准的六种 CAR-T 细胞产品中有四种使用基于 FMC63 的 α CD19 单链可变片段(源自鼠单克隆抗体)作为细胞外结合结构域。临床研究表明,患者对自体 CAR-T 细胞的非自身 CAR 成分或同种异体 CAR-T 细胞的供体特异性抗原产生体液和细胞免疫反应,这被认为可能会限制 CAR-T 细胞的持久性和重复给药的成功率。 方法 在本研究中,我们实施了一种一次性方法,通过表达与抗原加工相关的转运蛋白的病毒抑制剂 (TAPi) 结合编码针对 II 类 MHC 转录激活因子 (CIITA) 的 shRNA 转基因,同时减少抗原呈递和两类主要组织相容性复合体 (MHC) 的表面表达,从而防止对工程 T 细胞的排斥。通过流式细胞分析和混合淋巴细胞反应试验在体外筛选出最佳组合,并在白血病和淋巴瘤小鼠模型中在体内进行验证。使用患者样本在自体环境中评估功能,并使用同种异体小鼠模型在同种异体环境中评估功能。结果 Epstein-Barr 病毒 TAPi 和靶向 CIITA 的 shRNA 的组合可有效降低 α CD19“隐形”CAR-T 细胞中的细胞表面 MHC I 类和 II 类,同时保留体外和体内抗肿瘤功能。使用先前接受自体 α CD19 CAR-T 细胞治疗的患者的 T 细胞进行的混合淋巴细胞反应试验和 IFN γ ELISpot 试验证实,表达隐形转基因的 CAR T 细胞可逃避同种异体和自体抗 CAR 反应,这在体内得到了进一步验证。重要的是,我们注意到接受过多次 CAR-T 细胞输注的患者中存在抗 CAR-T 细胞反应,而这种反应在体外用含有隐形转基因的自体 CAR 进行再刺激时会降低。结论总之,这些数据表明,所提出的隐形转基因可能会降低自体和同种异体细胞疗法的免疫原性。此外,患者数据表明,重复剂量的基于 FMC63 的自体 α CD19 CAR-T 细胞可显著增加这些患者的抗 CAR T 细胞反应。
过去十年,人工智能 (AI) 系统或工具在一系列任务或职业中不断涌现。人工智能系统的开发需要一个迭代的价值链过程,涉及不同阶段:数据收集和注释、分析和模型开发以及数据验证,然后这些阶段形成一个循环。由于需要人类判断,工人是这个过程(人机循环)不可或缺的一部分。本政策简报探讨了这些工人的特点、他们的工作条件以及他们执行的任务内容。它展示了人工智能发展的这一过程如何破坏实现体面劳动(可持续发展目标 8)的进展。政策简报最后呼吁负责任和合乎道德的人工智能发展过程,并强调人工智能供应链中需要披露劳动力,以确保所有人都有体面的工作条件。
量子计算的发展推动了对量子网络的发展需求,以便将地理上分散的量子计算机互连 [1,2]。量子隐形传态协议可以将任意未知的量子态从一个位置传输到另一个位置 [3]。本文旨在说明如何将复杂系统的行为分解和抽象为一组较小的块,以方便理解更复杂的行为。具体来说,我们将展示如何将量子隐形传态协议(量子网络的基本元素)分解为其组成块,独立研究每个块的行为,并检查这些块的互连集合如何表现,从而简化对协议工作原理的理解。量子隐形传态协议通常被视为“神奇的”,因为它是将未知量子态从一个位置传输到另一个位置的唯一方法 [2]。我们试图揭开这种观点的神秘面纱,以表明量子隐形传态协议背后没有“魔法”。通过对量子力学块的数学抽象建立良好的理解,检查组成块的行为,研究块集合的组成,并使用大学水平的代数进行简单的数学分析,人们可以轻松理解该协议的工作原理。在本文中,我们假设读者对量子信息理论表示有基本的了解。