前言.................... ... ................. ... ................. ... ................................................................................................................................................................. 7 2.2 电气要求.................................................................................................................................................................... ................................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. 9 2.4 操作要求. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... ....... ....... ....... .
“将石墨材料塑造成高级应用的复杂几何形状,一直是一个关键挑战,限制了其广泛采用。”滑铁卢化学工程系教授Milad Kamkar博士说。“使用我们提出的方法,我们可以将3D-Print石墨烯变成任何形状。”
在我们2010年的评论《公平社会健康的生活》中,我们有六个建议领域:幼儿,教育,工作和就业,健康生活,生活环境的最低收入,更健康的生活方式。通常,我被要求推荐一个作为优先事项。本报告说明了为什么它们都相互关联。冰冷的房屋对儿童的健康,发展和教育有影响。薪水差的工作尤其会导致贫困,尤其是燃料贫困。贫困因福利支付而导致的贫困不足以满足必需品的成本。住房和环境的质量是健康与健康公平的关键。高昂的住房成本有助于贫困。燃料贫困导致健康饮食与温暖的环境之间无法选择。
摘要 在过去十年中,人工智能取得了显著进步,现已被视为解决环境问题(首先是温室气体排放(GHG))的首选工具。与此同时,深度学习社区开始意识到,训练具有越来越多参数的模型需要大量的能源,并会导致温室气体排放。据我们所知,从未直接解决过人工智能解决方案对环境(绿色人工智能)而不仅仅是温室气体的完整净环境影响。在本文中,我们建议研究绿色人工智能可能带来的负面影响。首先,我们回顾不同类型的人工智能影响,然后介绍用于评估这些影响的不同方法,并展示如何将生命周期评估应用于人工智能服务。最后,我们讨论如何评估一般人工智能服务的环境实用性,并指出现有绿色人工智能工作的局限性。
报道了在多铁绝缘体 Cu 2 OSeO 3 中发现了一种新型长寿命亚稳态 skyrmion 相,并用 Lorentz 透射电子显微镜对低于平衡 skyrmion 口袋的磁场进行了可视化。此相可通过用近红外飞秒激光脉冲非绝热激发样品来获得,而任何传统的场冷却协议都无法达到,这被称为隐藏相。根据光创造过程的强烈波长依赖性以及通过自旋动力学模拟,磁弹效应被确定为最可能的光创造机制。该效应导致磁自由能景观的瞬态改变,将平衡 skyrmion 口袋延伸到更低的磁场。对光诱导相的演变进行了超过 15 分钟的监测,未发现任何衰减。由于这样的时间比激光脉冲在材料中引起的任何瞬态效应的持续时间长得多,因此可以假设新发现的 skyrmion 状态在实际应用中是稳定的,从而为在超快时间尺度上按需控制磁状态的新方法开辟了新天地,并大幅减少了与下一代自旋电子器件相关的散热。
虽然其他火力发电厂(如煤炭和核电厂)通常在现场储存燃料,但大多数天然气发电机通过管道实时接收燃料。此外,天然气发电厂通常实时投入使用或增加或减少发电量以应对负荷波动、其他具有可变输出的发电资源(如风能和太阳能)或网络中断事件。因此,天然气发电厂从管道网络中提取的天然气量可能会在几天甚至几小时内发生很大变化。从历史上看,天然气网络运营商能够通过将多余的天然气储存在储存设施或管道内来支持这种变化;这种储存被称为管道包。通过在天然气发电机处储存额外的天然气以供可变操作,天然气网络本质上充当了电力系统的隐藏灵活性来源。天然气网络可以提供的灵活性取决于网络的配置,包括任何天然气储存的位置、管道的长度和直径、发电机额定值以及其他用户对天然气的需求。
在本文中,我们探索了受拟阵理论启发的量子加速问题,即使用最大内积预言机和子集预言机来识别一对 n 位二进制字符串,保证它们具有相同数量的 1,并且恰好有两位不同。更具体地说,给定两个满足上述约束的字符串 s,s ′ ∈{0, 1} n,对于任何 x ∈{0, 1} n,最大内积预言机 O max (x) 返回 s·x 和 s ′·x 之间的最大值,子集预言机 O sub (x) 指示 x 中 1 的索引集是否是 s 或 s ′ 中索引集的子集。我们提出了一个量子算法,该算法消耗 O (1) 次查询来获取最大内积预言机,用于识别对 { s, s ′ } ,并证明任何经典算法都需要 Ω( n/ log 2 n ) 次查询。此外,我们提出了一个量子算法,该算法消耗 n
作为数字身份的新兴范式,分散的身份(DID)在各个方面都具有比传统身份管理方法的优势,例如增强以用户为中心的在线在线服务并确保完整的用户自主权和控制。验证凭证(VC)技术用于促进跨多个实体的分散ID访问控制。但是,现有计划通常依赖于分布式的公钥基础,该基础也会引起挑战,例如上下文信息推论,密钥曝光和发行人数据泄漏。为了解决上述问题,本文提出了一个永久性发行人隐藏(PIH),这是首次使用签名的无VC模型(名为SLVC-DIDA)进行了多方身份验证框架。我们提出的计划避免了通过采用哈希和发行人会员证明来签署密钥的依赖,这支持通用零知识多党派进行了认证,从而消除了其他技术集成。我们采用零知识的RSA蓄能器来维护发行人集的匿名性,从而通过基于默克尔树的VC列表来保护身份属性的隐私,从而实现公众验证。通过消除对公钥基础设施(PKI)的依赖,SLVC- DIDA可以完全分散发行和验证DIDS。此外,我们的计划通过实施零知识发行者集和VC列表来确保PIH,从而有效地减轻了关键泄漏和上下文推理攻击的风险。我们的实验进一步评估了SLVC-DIDA的有效性和实用性。
是麻风幼虫(M. Maggots)鼻腔侵染的麻风病产生的很少和致命的并发症。我们的患者呈现出鼻造成肌病的特征,包括上毒,鼻阻塞和鼻腔肥大的鼻腔肿大。鼻子充当M. Leprae进入体内的水库。鼻阻塞是常见的,是鼻粘膜颗粒浸润的结果。它在麻风病中很常见,并且患者出现症状,臭味和血液淋巴结的鼻腔排出,鼻阻塞,性低下和面部疼痛。这些急性表现可能使纤维炎,鼻孔,畸形,脑膜炎和海绵鼻窦血栓形成复杂化(10)。手动提取和在拭子中的甘油儿局部应用已用作麻风病中鼻肌病的治疗方式(10)。
弱监督隐藏物体分割 (WSCOS) 旨在使用稀疏注释的数据进行模型训练,以分割与周围环境良好融合的物体。这仍然是一项具有挑战性的任务,因为 (1) 由于内在相似性,很难将隐藏物体与背景区分开来,以及 (2) 稀疏注释的训练数据仅为模型学习提供弱监督。在本文中,我们提出了一种新的 WSCOS 方法来应对这两个挑战。为了解决内在相似性挑战,我们设计了一个多尺度特征分组模块,该模块首先按不同粒度对特征进行分组,然后聚合这些分组结果。通过将相似的特征分组在一起,它可以促进分割的一致性,从而有助于获得单个和多个物体图像的完整分割结果。对于弱监督挑战,我们利用最近提出的视觉基础模型“分割任何物体模型 (SAM)”,并使用提供的稀疏注释作为提示来生成分割蒙版,用于训练模型。为了减轻低质量分割蒙版的影响,我们进一步提出了一系列策略,包括多增强结果集成、基于熵的像素级加权和基于熵的图像级选择。这些策略有助于提供更可靠的监督来训练分割模型。我们在各种 WSCOS 任务上验证了我们方法的有效性,实验表明我们的方法在这些任务上实现了最先进的性能。代码将在 https://github.com/ChunmingHe/WS-SAM 上提供。