在 PLAXIS 2D 输入中,可以使用复合板来模拟钢筋喷射混凝土衬砌,复合板的属性是通过平均喷射混凝土和间隔钢组(等效截面)的贡献来计算的。在第二阶段,一旦运行了 PLAXIS 2D 分析,就有必要在支撑能力图上绘制力矩、剪切力和推力,以检查钢组和喷射混凝土衬砌中产生的应力是否在允许的范围内。为此,首先需要将等效截面上计算出的推力、力矩和剪切力重新分配到钢组和喷射混凝土各个组件上。一旦执行了重新分配操作,就可以生成支撑能力图,并独立评估钢组和喷射混凝土组件的安全性。
自旋转移扭矩磁盘磁盘随机访问存储器(STT-MRAM)已成为一种有希望的非挥发记忆技术,与闪存相比,可提供可扩展性,高耐力和更快的操作[1,2]。它与SRAM竞争的能力有可能彻底改变未来信息存储。MRAM电池的核心是由COFEB磁参考层(RL),MGO隧道屏障(TB)和COFEB游离磁性层(FL)组成的磁性隧道连接(MTJ)。具有垂直磁化的FL和RL(PMTJ)的设备可实现大量的足迹,并为高密度MRAM溶液打开了路径。一直在不断努力提高STT-MRAM设备的切换性能,目的是实现子纳秒(子NS)切换时间。虽然自旋 - 轨道扭矩(SOT)设备显示了子NS开关性能,但与STT设备的两端结构相比,从技术的角度来看,它们的三端设备结构并不理想[3]。在PMTJ设备中掺入钼(MO)已显示出胜过常规TA的PMTJ,而TA则用垂直磁各向异性(PMA),热耐受性和开关性能作为COFEB电极的缓冲/帽/帽[4]。双磁隧道连接(DMTJ),具有额外RL和第二个TB的MTJ,已被研究为常规MTJ设备的有效替代方案,最多两倍的开关效率提高了开关效率[5,6]。但是,结构导致TMR值较低,到期
我们证明,可以设计中红外跨带过渡的吸收饱和,以10-20 kW cm 2的中等光强度和室温下。该结构由一系列具有明智设计的253 nm厚的GAAS/ALGAAS半导体异质结构的金属 - 气管导体 - 金属金属斑块组成。在低入射强度下,结构在强光 - 耦合方面起作用,并在接近8.9 L m的波长下表现出两个吸收峰。饱和作为向弱耦合方案的过渡,因此,在增加入射强度时向单峰吸收。与耦合模式理论模型进行比较解释了数据,并允许推断相关的系统参数。当泵激光器在空腔频率上调谐时,随着入射强度的增加,反射率会降低。相反,当激光器以极化频率调谐时,反射性非线性会随着入射强度的增加而增加。在这些波长下,系统模仿了MID-IR范围内可饱和吸收镜的行为,这是当前缺失的技术。
开发大规模超导量子处理器的方法必须应对固态设备中普遍存在的大量微观自由度。最先进的超导量子比特采用氧化铝 (AlO x ) 隧道约瑟夫森结作为执行量子操作所需的非线性源。对这些结的分析通常假设一种理想化的纯正弦电流相位关系。然而,这种关系预计仅在 AlO x 屏障中透明度极低的通道极限下成立。在这里,我们表明标准电流相位关系无法准确描述不同样品和实验室中 transmon 人造原子的能谱。相反,通过非均匀 AlO x 屏障的介观隧穿模型预测了更高约瑟夫森谐波的百分比级贡献。通过将这些包括在 transmon 哈密顿量中,我们获得了计算和测量能谱之间数量级更好的一致性。约瑟夫森谐波的存在和影响对于开发基于 AlO x 的量子技术(包括量子计算机和参数放大器)具有重要意义。例如,我们表明,经过设计的约瑟夫森谐波可以将传输量子比特中的电荷分散和相关误差降低一个数量级,同时保持其非谐性。
弗罗茨瓦夫科技大学,纳米计量学系 (1) ORCID: 1. 0000-0003-1565-7278; 2. 0000-0001-6649-1963; 3. 0000-0001-6218-0658; 4.0000-0001-9197-1862; 5. 0000-0002-5146-2868; 6. 0000-0003-1300-6420; 7.0000-0001-8482-301X; 8. 0000-0002-3187-1488; 9. 0000-0003-4182-9192 doi:10.15199/48.2024.06.41 教育扫描隧道显微镜——用于纳米技术教学和纳米计量研究的开放式架构平台摘要。在本文中,我们提出了一个教育性扫描隧道显微镜平台,可以研究纳米级的表面。该设计结构的主要优点是其开放式架构,可以进行各种实验,包括教学实验和高度专业化的科学工作。该系统是弗罗茨瓦夫科技大学电子、光子学和微系统学院纳米计量学系文凭和博士论文的一部分。 (教育扫描隧道显微镜——用于教育和纳米计量研究的开放式架构平台)摘要。在本文中,我们介绍了内部硬件和软件平台,可以演示扫描隧道显微镜 (STM) 的设计和操作以及衍生的诊断技术,从而能够确定纳米级表面的特性。所述设置的主要优点是开放式架构,这对于全面了解构造的某些方面以及执行测量的方式至关重要。由于平台采用模块化设计,学生可以通过基础培训课程和文凭课程等各种形式的学习活动来提高自己的能力。所描述的解决方案是一种独特的设置,它是利用弗罗茨瓦夫科技大学纳米计量学系研究人员的经验开发的。关键词:扫描探针显微镜、扫描隧道显微镜、纳米计量学、控制和信号电子学。简介扫描隧道显微镜 (STM) 自 1982 年开发以来 [1,2],已发展成为一种先进的诊断技术,它与其他样品制备技术和分析工具相结合,能够以原子分辨率洞察材料的结构 [3–6]。尽管扫描隧道显微镜的概念看似简单,但实际设置在实施特定测量模式以及仪器方面却很复杂。然而,STM 背后的理念仍然足够简单,本土建筑商可以开发自己的测量系统——有很多自己动手 (DIY) 的项目可以找到 [7]。此外,控制和测量分析软件领域也正在快速发展[8,9]。与市售机器相比,开发的显微镜并不复杂,也不是开放式装置。在未来纳米技术专家的教育过程中,获得 STM 设计和操作的透明度是一个重要问题。培训旨在提供必要的知识和经验,教他们如何准备和使用 STM,以获得样品表面的原子分辨率成像。特别是,处理样品、准备扫描尖端、配置系统的特定部分、优化测量参数以及数据处理和分析等问题是培训的重要组成部分。很少有实验室会自下而上地开设扫描探针显微镜 (SPM) 课程 [10]。在这种情况下,需要为学生提供纳米技术工具 [11]。为了提供实现上述培训条件的环境,纳米计量学系开发了一种特定的硬件软件设置。与商用 STM 系统不同,它在信号处理和采集方面提供了完全透明性,包括隧道电流、PID 信号(特别是 Z 和误差信号)、扫描控制(X、Y)信号和输出数据。系统由专门的
摘要 - 传输层数据无意间泄漏元数据 - 例如谁与谁交流。尽管存在强大运输层隐私的工具,但它们具有采用障碍,包括与移动设备不符的性能开销。我们认为,通过更改所有流量的元数据隐私的目标,我们可以为运输层隐私的务实方法打开一个新的设计空间。作为朝这个方向发展的第一步,我们建议使用信息流控制中的技术,并提出了一种有原则的方法,用于构建具有元数据隐私的系统的正式模型,以供某些人拒绝,可拒绝,流量。我们证明,可否认的流量实现了针对强大对手的元数据隐私 - 这构成了信息流控制和我们知识的匿名交流的首次桥接。此外,我们表明,可以通过为拒绝即时消息传递(牛仔布)设计新颖的协议来扩展现有的最新协议以支持元数据隐私,该协议是信号协议的变体。为了显示我们方法的功效,我们在未修改的信号之上实施并评估了一个即时消息传递系统运行牛仔布。我们从经验上表明,信号上的牛仔布可以在不破坏现有功能的情况下保持低延迟的信号流量,同时支持可拒绝的信号流量。
本演讲是由JPMorgan Chase&Co。的全球技术应用研究中心为信息目的准备的。本演讲不是JPMorgan Chase&Co。或其分支机构研究部的产物。JPMorgan Chase&Co。或其任何关联公司都不明确或暗示代表或保证,也不承担与本演示文稿有关的任何责任,包括无限制,在本文所包含的信息的完整性,准确性或可靠性以及潜在的合法性,合规性,合规性,税收,税收,税收,税收效果。本文档不打算作为投资研究或投资建议,也不是作为购买或出售任何安全,金融工具,金融产品或服务的建议,要约或征集,也不是以任何方式用于评估参与任何交易的优点。
由小型地下哺乳动物产生的广泛觅食隧道干扰对草原的土壤物理特性和养分具有重要影响。这项研究以高原Zokor(Eospalax Baileyi)为例,以研究小型地下哺乳动物对土壤微生物生物量碳(SMBC)和土壤有机碳(SOC)储存的隧道干扰的影响。配对设计用于定位三个地点的高山草原中的90个隧道四边形和90个非隧道四边形。这项研究表明,SMBC,SOC浓度和SOC存储在隧道四边形中分别为47.4%,26.8%和22.0%,分别比非隧道四方型的SMBC低47.4%,22.0%。这项研究还表明,土壤微生物生物量氮是影响非隧道四边形储存的主要因素,而它不是隧道Quadrats的主要因素。土壤pH和土壤铵氮不是非隧道四边形的主要因素,而它们是影响隧道四边形中SOC存储的主要因素。与非隧道四边形相比,觅食隧道干扰导致了一种新的途径,在该途径中,土壤pH积极影响隧道四方中的SOC存储。这项研究的结果表明,觅食隧道干扰对SMBC CON中心较低引起的土壤肥力产生负面影响,并且可能导致Alpine Grasslands的土壤碳损失,因为SOC储存较低。鉴于青海地基高原的高山草原对土壤碳循环和气候调节的影响,在评估草地碳储存和制定有效草原管理和保护的策略时,至关重要的是要考虑到它们。
在2015年[1]实现了从单个原子中对单个原子的电子自旋共振信号的观察,并且自那时以来已经取得了相当大的进步。(有关其他参考,请参见推荐论文)。最近推荐的两篇论文报告特别引人注目的进展,这应该引起凝结问题以及量子计算社区的关注。在第一张纸中,携带s = 1/2的分子连接到STM尖端,并观察到尖锐的电子自旋共振。该共振的移位可用于感应很小的磁场和电场,并具有易A的尺度空间分辨率。第二篇论文报告了位于表面上的传感器原子的ESR信号的使用,以询问其他两个S = 1/2原子,这些原子在Qubits上使用。使用脉冲场技术证明了显着的连贯性能和两个量子操作。本评论将主要集中在第一篇论文上,最后讨论了第二篇论文。在单个离子水平上显示ESR的知名系统是Diamond的NV中心。[2] NV中心的非常狭窄的共振可用于测量局部磁场,向下降低Micro-Tesla Hz 1/2。通过将钻石放在AFM尖端上,也可以进行扫描。但是,由于NV中心位于与表面的数十纳米尺度上,因此这限制了NV中心与其靶标的距离,因此将空间分辨率与数十纳米的纳米分辨率限制。另一方面,尖端的垂直位置可以变化,这增加了测量磁性