自然发生的集体运动是一种引人入胜的现象,其中蜂拥而至的自发和协调其运动。许多蜂群的理论模型都假定理想化,完美的感知能力,而忽略了基本的感知过程,尤其是对于依靠视觉感知的代理商而言。具体而言,许多蝗虫等许多蜂群中的生物视觉利用了单眼非镜像视觉,从而防止了距离和速度的完美获得。此外,蜂群的同伴可以在视觉上相互阻塞,从而进一步引入估计错误。在这项研究中,我们探索了使用非镜镜,单眼视觉在受限条件下出现有序集体运动的必要条件。我们提出了一种基于视觉的聚集运动模型,用于蝗虫样药:拉长形状,平行于水平平面的全向视觉传感器,缺乏立体深度感知。该模型解决了(i)距离和速度的非镜镜估计,(ii)视野中存在闭塞。我们考虑并比较代理商可能用来以视觉感知过程所需的计算复杂性为代价来解释部分视觉信息的三种策略。在各种几何环境(环形,走廊和环形领域)进行的计算机模拟实验表明,这些模型可以导致有序的或近地有序状态。同时,它们在达到顺序的速度上有所不同。此外,结果对代理的伸长敏感。在几何受限的环境中进行的实验揭示了模型之间的差异,并阐明了使用它们来控制蜂群剂时可能的权衡。这些建议用于进一步研究生物学和机器人技术的途径。
混合有机无机卤化物钙钛矿因其出色的光电特性和便捷的制造工艺而闻名,使其成为下一代光伏和光电设备的主要候选者。通过在A位置结合较大的有机阳离子,已经开发出一种新型的“ 3D空心钙钛矿”类,表现出增强的稳定性和可调的光电特性。这项研究系统地探讨了{en}mapbi₃薄膜具有不同乙二醇(EN 2+)含量的薄膜的结构,相变和光物理特征。较小极性EN 2+的掺入会扩大钙钛矿单元细胞,延长载体寿命并破坏Ma⁺偶极 - 偶极相互作用,从而降低了四方到四方的骨相变温度。温度依赖性的光致发光研究表明,EN 2+掺入降低了在低温下自捕获激子发射的强度和Stokes变化,这归因于Ma⁺阳离子的集体旋转动力学的减少。这些发现强调了A-位阳离子动力学在调节混合卤化物钙钛矿中调节相位稳定性和激素行为中的关键作用,从而加深了我们对有机阳离子和无机框架之间相互作用的理解,并突出了3D空心perovskites的潜在稳定且可调的光学光合型应用程序的潜力。
主动剂将存储或环境能量转换为机械工作,将其注入系统的最小尺度[1-5]。他们通常通过某种形式的自我推测引入活动,通过比对或吸引力抑制力与邻居相互作用,并可能受到噪声的影响。近年来,已经研究了许多不同的活动系统模型,具有多种参数组合,这可能会导致各种方案和非平衡阶段。到目前为止,只有少数几个被鉴定出来,与具有各种形式的(极性或列表)定向秩序的自组织状态[6-8],聚类[9-12]或相位分离[13,14];以及代理在随机变化方向上移动的无序状态。显示出取向秩序的最多研究的阶段之一的特征是集体运动,在该状态下,所有试剂都均为对齐并朝着共同的方向前进[15,16]。可以在不同类型的生物学系统中找到集体运动的例子,包括环骨骼运动蛋白[17-19],细菌菌落[20-22],昆虫群[23,24],鸟羊群[25,26]和鱼类学校[27-30]。它也可以在人工系统中发展,例如主动胶体悬浮液[11],胶体辊[31,32],振动的极性磁盘[33,34]或机器人群[35 - 42]。这种类型的自组织最初被认为需要局部比对相互作用[43],但现在已显示出从吸引力 - 抑制力和标题方向之间的局部耦合中出现的[44,45]。无论其潜在机制如何,在所有这些情况下,集体运动都对应于从无序阶段出现的对齐剂的有序阶段。此外,两个阶段有时被细分为具有不同密度分布的参数区域[9,10,12,14,46 - 51]。除了集体运动之外,其他集体状态最近在弹性或堵塞的活动中被确定
现代计算增强了我们对社会相互作用如何塑造动物社会中集体行为的理解。尽管分析模型在研究集体行为方面占主导地位,但本研究介绍了一个深度学习模型,以评估鱼类杜鹃花的社交相互作用。我们将深度学习方法的结果与实验以及最先进的分析模型的结果进行了比较。为此,我们提出了一种系统的方法来评估集体运动模型的信仰,利用了一组严格的个人和集体时空可观察物。我们证明,社交互动的机器学习模型可以直接与他们的分析同行竞争,以复制微妙的实验可观察物。更重要的是,这项工作强调了在不同时间尺度上进行一致验证的必要性,并确定了关键的设计方面,使我们能够捕捉短期和长期动态的深度学习方法。我们还表明,我们的方法可以扩展到没有任何培训的情况下以及其他鱼类,同时保留了深度学习网络的相同结构。最后,我们讨论了在动物群体中集体运动研究的背景下,ML的附加值及其作为分析模型的补充方法的潜力。
捕获离子为量子计算和模拟提供了一个原始平台,但提高它们的相干性仍然是一个关键挑战。在这里,我们提出并分析了一种新策略,通过参数放大离子的运动来增强捕获离子系统中的相干相互作用——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及它如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展捕获离子量子计算的重要组成部分。我们的研究结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。
囚禁离子为量子计算和模拟提供了一个完美的平台,但提高它们的相干性仍然是一个关键挑战。本文,我们提出并分析了一种通过参数放大离子运动来增强囚禁离子系统中相干相互作用的新策略——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展囚禁离子量子计算的重要组成部分。我们的结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。
战后时期,澳大利亚被称为“幸运之国”。这个绰号反映了许多澳大利亚人享受的幸运生活方式,他们将这个国家温暖的气候、宽敞的郊区住宅、较短的工作时间和慷慨的带薪年假福利结合在一起。对于大多数澳大利亚工人来说,工作日仅限于每周工作五天(或轮班工作模式中分配的等效小时数)的八小时工作制。八小时工作制和五天工作制是澳大利亚历史悠久的福利,最初是由工人及其工会的集体运动实现的。1855 年,新南威尔士州的石匠工会首次实现了八小时工作制(8 小时劳动、8 小时娱乐、8 小时休息),他们的成功引发了八小时工作制运动,到 1948 年,该运动已为澳大利亚绝大多数工人实现了八小时工作制。1
囚禁离子为量子计算和模拟提供了一个完美的平台,但提高它们的相干性仍然是一个关键挑战。本文,我们提出并分析了一种通过参数放大离子运动来增强囚禁离子系统中相干相互作用的新策略——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展囚禁离子量子计算的重要组成部分。我们的结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。
囚禁离子为量子计算和模拟提供了一个完美的平台,但提高它们的相干性仍然是一个关键挑战。本文,我们提出并分析了一种通过参数放大离子运动来增强囚禁离子系统中相干相互作用的新策略——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展囚禁离子量子计算的重要组成部分。我们的结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。
囚禁离子为量子计算和模拟提供了一个完美的平台,但提高它们的相干性仍然是一个关键挑战。本文,我们提出并分析了一种通过参数放大离子运动来增强囚禁离子系统中相干相互作用的新策略——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展囚禁离子量子计算的重要组成部分。我们的结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。