摘要 - 物联网促进了一个联系,聪明和可持续的社会;因此,必须保护物联网生态系统。基于IoT的5G和6G将利用机器学习和人工智能(ML/AI)的使用来为自动和协作的安全IoT网络铺平道路。零触摸,零信任的IoT安全性,具有AI和机器学习(ML)启用框架,提供了一种强大的方法来确保物联网(IoT)设备的扩展景观。本文介绍了一个基于零信任,零触摸和AI/ML的集成的新颖框架,该框架可用于检测,缓解和预防现代物联网生态系统中DDOS攻击。将重点放在新的集成框架上,通过为所有物联网流量,固定和移动5G/6G物联网网络流量以及数据安全性(隔离零触摸和动态政策执行)建立零信任。我们通过基于基于准确性,精度,回忆,F1-Score和Roc-auc进行比较,对五个机器学习模型,即X Gboost,Random Forest,K-Nearest Neight,随机梯度下降和Na've Bayes进行了比较分析。结果表明,检测和缓解不同DDOS向量的最佳性能来自基于整体的方法。通过合并网络切片,微分段,连续身份验证和弹性的5G/6G策略,该框架为基于基于勒索的DDOS攻击提供了强大的可扩展安全性。零触摸,具有AI/ML启用的零值得物联网安全性是基于5G/6G的物联网和工业互联网4.0和5.0时代的强大网络安全策略的范式。通过整合这些技术,组织可以有效地保护其物联网环境,保护敏感数据并在面对不断发展的网络威胁时保持业务连续性
摘要 - 物联网促进了一个联系,聪明和可持续的社会;因此,必须保护物联网生态系统。基于IoT的5G和6G将利用机器学习和人工智能(ML/AI)的使用来为自动和协作的安全IoT网络铺平道路。零触摸,零信任的IoT安全性,具有AI和机器学习(ML)启用框架,提供了一种强大的方法来确保物联网(IoT)设备的扩展景观。本文介绍了一个基于零信任,零触摸和AI/ML的集成的新颖框架,该框架可用于检测,缓解和预防现代物联网生态系统中DDOS攻击。将重点放在新的集成框架上,通过为所有物联网流量,固定和移动5G/6G物联网网络流量以及数据安全性(隔离零触摸和动态政策执行)建立零信任。我们通过基于基于准确性,精度,回忆,F1-Score和Roc-auc进行比较,对五个机器学习模型,即X Gboost,Random Forest,K-Nearest Neight,随机梯度下降和Na've Bayes进行了比较分析。结果表明,检测和缓解不同DDOS向量的最佳性能来自基于整体的方法。通过合并网络切片,微分段,连续身份验证和弹性的5G/6G策略,该框架为基于基于勒索的DDOS攻击提供了强大的可扩展安全性。零触摸,具有AI/ML启用的零值得物联网安全性是基于5G/6G的物联网和工业互联网4.0和5.0时代的强大网络安全策略的范式。通过整合这些技术,组织可以有效地保护其物联网环境,保护敏感数据并在面对不断发展的网络威胁时保持业务连续性
零信任体系结构(ZTA)是一个安全框架,它以“永不信任,始终验证”原则运行,确保没有用户或设备固有地信任,无论它们是在网络周围内还是外部。行为分析通过建立正常用户和设备行为的基准,在成功实施ZTA中起着至关重要的作用,这对于识别异常和潜在的安全威胁至关重要。通过不断监视和分析用户活动,组织可以检测到偏离已建立模式的可疑行为,从而增强其实时响应安全事件的能力。本文探讨了将行为分析与零信任方法整合不仅可以加强安全措施,还可以优化访问控制,减少数据泄露的风险并提高对网络威胁的整体组织弹性。
匹兹堡大学通过基于扫描分解的基于扫描模拟的反馈 - 馈线控制执行摘要摘要大大降低了激光粉池床融合添加剂制造的融化池和微观结构的变化:管理当地几次对激光粉末床融合(L-PBF)添加剂生产性能的影响是最高核心的一项优先级。因此,该程序的目的是开发一种基于仿真的反馈馈电控制方法,以维持整个L-PBF部分的熔体池和微观结构的一致性。特定的研究目标包括:(1)基于通过不同过程参数产生的测量熔体池维度开发经过实验验证的计算流体动力学(CFD)模型; (2)开发有效的混合CFD和FEM(有限元方法)模型,以模拟多轨,多层方案; (3)开发基于迭代模拟的反馈 - 馈线控制模型。该项目中的重点材料是基于镍的合金inconel 718,它广泛用于高温核应用中,例如核反应堆核心和热交换器。拟议的研究旨在解决核能社区中L-PBF进程的资格和更广泛采用的关键障碍。核芯和热交换器等核应用通常包含不同尺寸的几何特征,这会导致熔体池和微观结构在整个零件过程中差异很大。拟议研究中的关键创新是开发了混合CFD-FEM模拟模型,该模型为此基于反馈 - 反馈控制方法。通过使用准确的扫描分辨过程模拟,通过调整过程参数(激光功率和扫描速度)来最佳控制熔体池尺寸,预计熔体池和微观结构将在整个复杂部分中更加一致。通过减少新的L-PBF产品开发中昂贵的实验数量,可以以较低的成本进行熔体池和微观结构一致性的巨大改进,以更有效地执行资格。大多数L-PBF热过程模拟模型使用CFD或FEM;但是,前者是准确的,但在计算上非常昂贵,而后者是有效的,但不足以捕获熔体池的尺寸和温度,而随着局部几何形状的变化。在拟议的CIFEM(CFD施加的FEM)过程仿真模型中,瞬态热场是根据高保真CFD模拟计算的,并通过深度学习来推断。这些温度值是根据局部热环境所包含熔体池的局部FEM区域施加的,而其他地方的热传导则由FEM求解。开发的基于CIFEM的工艺模拟预计将是基于CFD的模拟效率的30-50倍,同时保持熔体池和温度场的预测准确性。使用CIFEM模型最佳地控制局部过程参数,预计熔体池尺寸的变化将减少50-70%,从而导致更一致的微观结构。因此,该项目将解决社区中的基本优先事项之一,并有助于促进更广泛的L-PBF程序在安全至关重要的核应用中。首席调查员:Albert C. TO,Albertto@pitt.edu
ZScaler(NASDAQ:ZS)加速数字转换,以使客户更加敏捷,高效,弹性和安全。ZScaler Zero Trust Exchange通过将任何位置的用户,设备和应用程序安全地连接到网络攻击和数据丢失,以保护数千个客户免受网络攻击和数据丢失。分布在全球150多个数据中心上,基于SASE的零信任交换是世界上最大的内联云安全平台。在zscaler.com上了解更多信息,或在Twitter @zscaler上关注我们。
“零信任”不仅仅是IT安全概念 - 它是我们数字现实的原则。它说:信任不是盲目授予的,但必须得到证明。如果您看马克·扎克伯格(Mark Zuckerberg)在Meta的情况下做出的决定,这是不可能的,这是Elon Musk已经在X上引入的实践(曾经是Twitter)。后果?虚假信息的狂野增长,它消除了真理与谎言之间的边界。因素不是完美主义者,而是在数字信息泛滥中设定了最低标准。没有这种情况,社交网络将成为混乱的平台,从而促进有针对性的虚假信息,仇恨和分裂。假新闻传播的速度比真理更快 - 这一事实极大地危及民主国家和社会背景。Zuckerberg的决定可能是驱动的(并且是出于政治动机),但价格很高:失去的信任。这里的零信任成为强制性。与此一样,如果没有身份验证,就不允许任何设备进入网络,社交平台还必须创建识别和停止错误信息的机制。最大化利润而不是显示响应的算法是错误的方法。同时,我们被要求作为用户更加批判地提问。我的看法:没有恒定的数字空间就变为混乱。零信任应该是按照平台行事的原则 - 具有透明度,责任和勇气进行监管。您同意吗?分享您的想法!
心电图(ECG)是通过分析心脏的电活动来评估心脏健康的重要诊断工具。本研究探讨了机器学习(ML)技术在ECG图形分析中的应用,旨在提高诊断心血管疾病的准确性和效率。通过临床咨询收集了一种多种心电图信号数据集,包括正常情况和异常病例。采用预处理技术来消除噪声,然后进行特征提取以识别临界模式。机器学习模型,包括支持向量机(SVM),随机森林和卷积神经网络(CNN),用于对诸如正常窦性心律,心房颤动和心室心动过速等节律进行分类。所提出的方法为协助临床医生在早期发现和诊断心脏条件下提供了一种可靠,有效的方法,其准确性,敏感性和特异性方面有希望的结果。
End User Agreement 5 Preface 6 Document conventions 6 Text formatting conventions 6 Requesting Technical Support 8 Self-Help Online Tools and Resources 8 Opening a Case with Support 8 Reporting Documentation Issues 8 What's New 9 Version 22.6R1 9 Version 22.5R1 9 Version 22.4R3 10 Getting Started with Ivanti Neurons for Zero Trust Access 11 What is nZTA 11 Deploying and Using nZTA 11 Manually Configuring Your nZTA部署13创建用户身份验证服务15工作流程:创建本地身份验证策略16工作流程:与Azure AD AD AD 26工作流程创建SAML身份验证策略26工作流程:使用本地ICS创建SAML身份验证策略43工作流程43工作流程:将TOTP添加到身份验证策略63中的用户组73与用户组合78启用78的启用78 Inders Offect 78 Indust Inderion 78 Inders Offect of Demant 78 Submistion 84 Inders Exprion 74 Gateway in VMware vSphere 89 Workflow: Creating a Gateway in Amazon Web Services 98 Workflow: Creating a Gateway in Microsoft Azure 108 Workflow: Creating a Gateway in KVM/OpenStack 126 Workflow: Creating a Gateway in Google Cloud Platform 141 Workflow: Creating a Gateway in Oracle Cloud Platform 163 Next Steps 261 Creating Device Policies and Device Rules 262 Introduction 262 Creating Device Policies 264 Creating Device Rules 268 Next Steps 284创建应用程序和应用程序组285简介285将应用程序添加到控制器285将应用程序组添加到控制器289下一步291
摘要:“分布式身份”是指使用分散的标识者(DID)和可验证的凭据(VC)从集中式身份系统的过渡,以实现安全和隐私的身份验证。具有分布式身份,对身份数据的控制将返回给用户,因此由于缺乏单点故障而使基于凭证的AEACK不可能。本研究评估了使用ZTA原理采用分布式身份时获得的安全性改进,尤其是关于分段网络中横向运动的安全性。还考虑了框架的实施规范,方法的优势和缺点,以及兼容性和可概括性问题。此外,该研究强调了隐私和法规依从性,包括一般数据保护法规(GDPR)和加利福尼亚州消费者数据隐私法(CCPA),分析了针对这些问题的潜在解决方案。该研究表明,采用分布式身份可以通过数量级来增强整体安全姿势,从而提供上下文和最小特权的授权和用户隐私。研究建议重新确定技术标准,扩大在实践中分布式身份的使用,并讨论其在当代数字安全环境中的应用。