小区在图 1 中以交叉阴影显示,其中角度范围是根据水路范围(而不是天线波束宽度)估算的,小区范围范围是根据常用的 8 kHz 采样率确定的。切萨皮克湾的一些特征可以从
通过减少零件数量和大量使用 COTS(包括可编程处理器),结合快速 COTS 插入方法,ALR-400 具有更高的可靠性、更低的生命周期成本和增强的可支持性。开放式架构提供模块化隔离标准接口,例如 MIL-STD-1553B、通信串行端口、USB、ARINC-429 和 100BaseT 快速以太网。雷达警告处理器可以承载防御辅助计算机 (DAC) 功能,从而实现控制和集成,
本出版物仅用于提供概要信息。在任何情况下,给出的任何建议或声明或建议均不构成或被视为构成 BAE Systems 对此类建议、声明或建议的准确性或完整性的保证或陈述。BAE Systems 对因与本文件相关的给出或未给出的建议或作出或未作出的声明而产生的任何损失、费用、损害或索赔概不负责。未经 BAE Systems 事先明确书面同意,不得以任何形式或任何方式复制、复制、改编或重新分发本文件的任何部分。 BAE SYSTEMS 是 BAE Systems plc 的注册商标。
APAR 确实是一种最先进的武器传感器系统 - 但对于 Thales Canada 系统部门来说,它的意义远不止于此:这是一个展示我们软件开发能力的机会。很少有软件的要求比 APAR 更复杂或更苛刻,因此我们交付 APAR 的能力超出了所有人的预期,表明我们可以满足任何软件需求。无论是构建指挥、控制和通信软件,还是开发实时武器系统软件,我们的团队都有人员和“专业知识”来交付。与我们签约开发和集成复杂系统的客户可以放心,我们的软件团队将在其中融入最优质的软件。构建自己的任务关键型武器系统、先进通信系统或其他要求苛刻的系统的客户可以依靠 Thales Canada 系统部门提供高效生产的高质量软件,这些软件融合了超过 15 年的系统集成经验所获得的所有增值领域专业知识。
当电子海图首次推出时,许多人反对在海图上加入雷达图像。多年来,这种情况已发生重大变化。如今,大多数复杂的海图系统(例如被归类为电子海图显示和信息系统 (ECDIS) 的系统)都能够同时显示雷达信息和海图信息。从用户的角度来看,这种组合提供了一种强大的工具,可提供更安全、更高效的导航。将海图和雷达结合起来的好处远远大于两者的总和,因为它们提供了对以前不那么明显的问题的新见解和认识。同时,它们为开发人员和用户都未曾预料到的旧导航问题提供了新的解决方案。
虽然 W1905 雷达模型库主要用于直接建模和模拟概念雷达/电子战系统及其操作环境,但它也可用于设计、验证和测试开发硬件。W1905 模块集及其示例工作区可用作算法和架构参考设计,以验证不同信号条件和环境场景下的雷达/电子战性能。通过考虑多种环境影响,同时保持开放的建模环境(MATLAB、C++、VHDL、测试设备),雷达系统设计人员可以高度自信地探索雷达/电子战架构,快速测试和原型开发硬件,并在多个概念操作中模拟操作结果,而无需昂贵的户外靶场测试或硬件模拟器。
防空雷达、军用飞机和导弹的情况。空中交通管制雷达 (ATC) 是空中交通管理中用于保护和监控民用和军用空中交通的所有雷达设备的总称。它们通常是具有高度专业化的固定雷达系统。防空雷达可以在相对较大的天空范围内探测空中目标并确定其位置、航向和速度。最大范围可以超过 300 英里,方位覆盖是一个完整的 360 度圆。根据提供的位置信息量,防空雷达分为两类。仅提供距离和方位信息的雷达称为二维或 2D 雷达;提供距离、方位和高度的雷达是三维或 3D 雷达。防空雷达被用作预警设备,因为它们可以在很远的距离探测到正在接近的敌机或导弹。早期探测对于成功防御攻击至关重要。另一个功能是引导战斗空中巡逻机到达适合拦截敌机的位置。
监视和气象雷达能力是国家基础设施的重要组成部分。无论是用于预测龙卷风或山洪暴发、在繁忙的机场安全地引导飞机进出跑道,还是监测天空中是否存在潜在的国防或恐怖主义威胁,雷达都有助于确保公民的安全并支持我们经济的健康发展。不幸的是,我们所有的雷达系统都在老化,大多数将在未来 10 年内过时。此外,由于使用的各种雷达系统数量众多且年代久远,它们在后勤上效率低下,并且采用的技术无法提供最佳服务水平。对全面雷达更换计划的需求恰逢其时。几十年来一直提供军事监视解决方案的技术正变得越来越经济实惠,适合民用。规模经济、后勤简单性和无线行业的利用技术相结合,使相控阵雷达成为天气和飞机监视的有吸引力的解决方案,特别是如果可以使用一个可扩展的平台进行监视。联邦气象服务和支持研究协调员办公室一直在协调使用天气和监视雷达数据执行任务的各部门之间的风险降低工作:商务部(国家海洋和大气管理局 - NOAA)、商务部
I 研讨会讨论了这个多方面主题的许多方面。数值目标建模具有很大的吸引力。提出了使问题在计算上更有效的方法。与全尺寸目标测量相比,模拟和缩放测量有助于建立信心,使用这些技术的经济有效组合来确定雷达截面数据。考虑了雨水去极化和表面多径传播等环境因素,以及人造箔条对雷达的影响。一个重要的研究课题是基于目标多普勒特性、偏振测量和一维或二维成像的非合作目标识别的稳健性。现代雷达系统提供大量数据,使得目标检测自动化几乎成为必需。比较了不同方法的优点。在未来复杂的电子战领域,签名修改是目标生存的先决条件。论文范围从低雷达截面结构设计和改造到主动消除技术。
5. 1 简介 89 5.2 资源管理和任务调度目标 91 5.3 静态阵列多功能雷达中的任务调度 92 5.3.1 背景 92 5.3.2 MESAR 算法 93 5.3.3 改进的 MESAR 算法 97 5.3.4 仿真架构 98 5.3.5 使用简单的双扇区监视系统进行调度 100 5.3.6 使用 MESAR 监视体积进行调度 104 5.3.7 使用 MESAR 调度程序进行绘图确认延迟 109 5.4 旋转阵列多功能雷达中的任务调度 110 5.4.1 背景 110 5.4.2 旋转多功能雷达系统的任务调度算法 114 5.4.3 旋转多功能雷达的波束搜索模式 118 5.4.4 旋转多功能雷达任务调度算法的结果 119 5.4.5 旋转多功能雷达的其他资源管理问题 123 5.5 用于高效调度的惩罚函数和模糊逻辑 124 5.5.1 模糊逻辑的使用 125 5.6 结论 126