摘要 - 从鸟类的视图(BEV)角度来看,语义场景细分在促进移动机器人的计划和决策方面起着至关重要的作用。尽管最近仅视力的方法表现出了显着的性能进步,但它们通常在不利的照明条件下(例如降雨或夜间)挣扎。虽然主动传感器为这一挑战提供了解决方案,但激光雷达的高成本仍然是一个限制因素。将摄像机数据与汽车雷达融合起来是更便宜的替代方法,但在先前的研究中受到了较少的关注。在这项工作中,我们旨在通过引入Bevcar(一种新型的BEV对象和地图细分方法)来推动这一有希望的途径。我们方法的核心新颖性在于首先学习原始雷达数据的基于点的编码,然后将其利用以有效地将图像特征抬起到BEV空间中。我们对Nuscenes数据集进行了广泛的实验,并证明Bevcar优于当前的技术状态。此外,我们表明,合并雷达信息显着提高了挑战性环境条件中的鲁棒性,并提高了远处对象的细分性能。为了培养未来的研究,我们提供了实验中使用的Nuscenes数据集的天气拆分,以及http://bevcar.cs.uni-freiburg.de的代码和训练有素的模型。
主要关键词