学术机构、州、联邦和私人机构一直在合作开发用于大气应用的相控阵雷达。目前,麻省理工学院林肯实验室 (MIT-LL) 正在开发一种多功能、二维 (2-D)、双极化、平面和多功能 S 波段雷达系统 [6]。这一开发中最大的挑战之一是实现可接受的极化性能 [7]。为了克服这一限制,国家强风暴实验室 (NSLL) 和俄克拉荷马大学正在评估为实际扫描不变天气测量制作圆柱极化相控阵雷达 (CPPAR) 原型的可能性 [8]。大气协同自适应传感中心 (CASA) [9] 提出的另一种方法包括低功耗、低成本的双极化相控阵雷达。为了克服极化失真,CASA 雷达仅在相对容易获得交叉极化隔离的主平面上执行电子扫描 [9]。
简介 风激光雷达在风力发电场场地评估等方面的应用近年来有所增加,这是准确性和可靠性提高的必然结果。激光雷达也正在成为主动涡轮机控制的工具 [1,2,3]。激光雷达在风速测量方面的一些优势在于它们可以进行远程测量,这意味着不需要高桅杆,并且可以轻松地从一个地点移动到另一个地点。这不仅适用于大气测量,还可用于风洞等,在风洞中,人们可以从几乎任何空间点的空间局部测量中受益,而不会干扰气流。然而,很少有研究报道将相干激光雷达技术应用于风洞环境。
高级驾驶辅助系统 (ADAS) 从舒适性增强发展到安全应用。随着对更高感知传感器数据质量的需求不断增长,基于激光的传感器往往主导许多实验性智能车辆系统,应用范围从行人保护(参见 Walchsh¨ausl 等人,2006 年)到完全自动驾驶(参见 Darms 等人,2009 年)。新的、有前途的信号处理方法,例如从机器人技术中采用的基于占用网格的方法(参见 Thrun 等人,2005 年),在很大程度上依赖于激光雷达传感器,并为高度自动化的驾驶辅助铺平了道路。与毫米波雷达相比,激光雷达 (lidar) 系统在方位角平面上提供更高的角度分辨率,能够分离相距小于 1 度的目标。这是许多 ADAS 应用的关键特性,因为高角度分辨率对于确定物体的宽度和形状至关重要。这些信息为对象分类算法和跟踪系统提供了宝贵的输入,可以精确确定
a 中国地质大学工程学院,武汉 430074,中国;b 中国测绘科学研究院,北京海淀区北太平路 16 号,100039,- jianfei1123@sina.com;第三委员会,第三工作组/3 关键词:海岸,应用,激光雷达,DEM,测量 摘要:激光雷达(LIDAR)是一种高精度、高密度获取三维坐标的新技术,集激光测距、计算机、GPS(全球定位系统)和 INS(惯性导航系统)于一体。潮间带地形测量是潮间带保护、开发和管理的基础工作,在我国测绘工程中占有十分重要的地位。本文简要介绍了激光雷达技术;然后在对TFACZ(潮滩与海岸带)特点与需求分析的基础上,指出LIDAR技术是解决TFACZ地理数据获取问题最有效的手段;对LIDAR技术在TFACZ地形测量中的应用进行了大量的探讨;最后利用Trimble GPS RTK系统对LIDAR数据的精度进行了检验。 1.引言
地质调查局局长和航空地球物理学领域的先驱,于 1987 年 8 月 12 日在阿拉斯加凯奇坎附近的一次直升机与飞机相撞中丧生。弗兰克出生于犹他州比克内尔。他获得了犹他大学电气工程理学学士学位 (1950) 和地球物理学理学硕士学位 (1953)。他继续在科罗拉多大学深造,获得了第二个地球物理数学理学硕士学位 (1967) 和电气工程物理学博士学位 (1973)。弗兰克在美国地质调查局的职业生涯长达 35 年,从 1952 年开始从事机载地球物理仪器、数据汇编和解释问题的工作。从 1955 年到 1962 年,他开发了各种可控和自然源电磁技术,应用于众多地质问题。1962 年,美国地质调查局购买了一架 Convair 240 飞机,Frank 参与了航空勘测地球物理仪器的开发、采购和测试。他特别感兴趣的是新的 INPUT 电磁系统和自动磁力仪系统。他积累的经验促成了现在的经典教科书“地球物理勘探中的电气方法”,该书于 1966 年与 George V. Keller 合作出版。1967 年,Frank 发表了第一条计算机生成的分层地球理论电磁测深曲线,成为大多数早期航空电磁解释方法的基础。在同一时期,弗兰克还开发了一个比例模型电磁测试设施,该设施提供了对理解现场观测和测试解释方法至关重要的数据。他的模型结果被国际公认为检查数值结果的标准。他开发了一种机载甚低频 (VLF) 接收器,其中包含一个电场参考,使其能够生成电阻率图
未来的机载雷达将需要在由杂波和干扰组成的干扰背景下检测目标。空时自适应处理 (STAP) 是指多维自适应滤波算法,它同时将来自阵列天线元件的信号和相干雷达波形的多个脉冲组合在一起,以抑制干扰并提供目标检测。STAP 可以改善对被主瓣杂波遮蔽的低速目标的检测、对被旁瓣杂波掩盖的目标的检测以及在杂波和干扰组合环境中的检测。本报告分析了解决 STAP 问题的各种方法。回顾了最佳或完全自适应处理。计算复杂性以及从有限可用数据中估计干扰的需求使完全自适应 STAP 不切实际。因此,需要部分自适应空时处理器。介绍了降维 STAP 算法的分类,其中算法根据所采用的预处理器类型进行分类。例如,波束空间算法使用空间预处理,而后多普勒方法在自适应处理之前执行时间(多普勒)滤波。在某些情况下,可以利用杂波的特殊结构来设计产生最小杂波等级的预处理器。对于每个类,可以采用样本矩阵求逆 (SMI) 或基于子空间的权重计算。仿真结果显示
雷达建模的改进使设计人员能够将性能水平指定得非常接近理论极限。这导致了非常强大的系统,但在评估其性能时几乎没有实验不确定性的余地。然而,关于评估雷达性能的方法的已发表文献却出奇地少。测试新雷达通常有三个独立的阶段:i) 第一阶段是在实验室中测量参数,以确保雷达在“投入现场”时的表现与预期一致。ii) 第二阶段通常是供应商的验证试验,这可以确保了解雷达的行为,从而确保正式验收试验会成功。iii) 第三阶段是供应商和客户共同见证的验收试验,提供雷达符合其规格的合同证据。实验室测试和现场试验之间的关系在 [1] 中进一步讨论,使用适当的评估方案对现代雷达系统的重要性在 [2] 中进一步讨论。在本文中,我们将第三阶段称为“验收”试验,第二阶段称为“验证”试验,两者合称为“评估”试验。本文将重点介绍泰雷兹与客户合作在这些评估试验中使用的方法。本文描述的许多实验结果都是在评估期间获得的
I 1960 年激光的发明使得使用相干光源作为激光雷达发射器成为可能。相干激光雷达具有许多与更常见的微波雷达相同的基本特征。然而,激光极短的工作波长带来了新的军事应用,特别是在目标识别和导弹制导领域。本文追溯了林肯实验室从 1967 年到 1994 年的激光雷达发展历程。这项发展涉及两种激光雷达系统的构建、测试和演示——高功率、远程 Firepond 激光雷达系统和紧凑型短程红外机载雷达 (IRAR) 系统。Firepond 解决了战略军事应用,例如空间物体监视和弹道导弹防御,而 IRAR 则被用作机载探测和战术目标识别的试验台。吨
