在阐明植物非编码 RNA 的重要作用方面取得了显著进展。在这些 RNA 中,长链非编码 RNA (lncRNA) 引起了广泛关注,尤其是它们在植物环境胁迫反应中的作用。LncRNA 在不同水平上调控基因表达,其中一种机制是通过募集 DNA 甲基转移酶或去甲基化酶来调节靶基因转录。在这篇小型综述中,我们重点介绍了 lncRNA 的功能,包括它们在 RNA 指导的 DNA 甲基化 (RdDM) 沉默途径中的潜在作用及其在非生物胁迫条件下的潜在功能。此外,我们还介绍并讨论了作物中 lncRNA 的研究。最后,我们提出了对植物育种可能重要的未来研究的路径展望。
1级干旱压力管理学校,ICAR-intation intation in Icar-national dyboric压力管理研究所,印度马哈拉施特拉邦Baramati,2号土壤和作物管理部,ICAR - 中国土壤盐度研究所,印度哈里亚纳邦Karnal,印度哈里亚纳邦Karnal,3 W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States, 4 Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States, 5 Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, India, 6 Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India, 7 Division of Soil科学,孟加拉国孟加拉国农业研究所,孟加拉国,8微生物科,ICAR研究科,原始研究,印度Junagadh,印度朱纳加德1级干旱压力管理学校,ICAR-intation intation in Icar-national dyboric压力管理研究所,印度马哈拉施特拉邦Baramati,2号土壤和作物管理部,ICAR - 中国土壤盐度研究所,印度哈里亚纳邦Karnal,印度哈里亚纳邦Karnal,3 W.K.Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States, 4 Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States, 5 Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, India, 6 Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India, 7 Division of Soil科学,孟加拉国孟加拉国农业研究所,孟加拉国,8微生物科,ICAR研究科,原始研究,印度Junagadh,印度朱纳加德
日益增加的气候波动威胁到世界粮食的确定性,因为这是限制农业生产的非生物和生物压力的主要驱动因素(Rosenzweig等,2014)。的非生物应力,例如过度冷或热,降水或干旱的发作以及土壤盐度或苏迪克,代表了植物在气候变化中经历的一些最常见的压力(Ashraf et al。,2018; Barmukh et al。,2022; Soren等,2020; Soren et al。,2020; Varshey; Varshey,Barmuke,barmukh et al a al al a al an a al a al a al an a al a al。温度波动,尤其是极度冷的发作,可能导致主要谷物作物(例如小麦(Triticum aestivum),大米(Oryza sativa)和玉米(Zea Mays L.))的寒冷损伤。这些农作物不是自然地适应或未专门为这种冷条件而繁殖(Dolferus,2014; Janksa等,2010; Solanke等,2008)。在零下条件下,冰晶体的形成,生物膜的渗透性改变以及细胞内或细胞外的活性氧(ROS)的产生。These changes result in a combination of symptoms like poor ger- mination, reduced seedling vigor or stunted growth, reduced leaf size, leaf yellowing and withering, reduced tillering, poor root proliferation, disturbed plant water relations, impeded nutrient uptake, premature heading, increased seed abortion, and reduced seed size leading to reduced yield (Andaya &, Tai 2006 ; Hassan et al., 2021 ; Li et Al。,2015年; Oliver等人,2002年;
1 宜宾学院农林与食品工程学院,四川省宜宾 644000 2 政府学院大学植物学系,巴基斯坦旁遮普省费萨拉巴德 38000 3 卡拉奇大学数学系,巴基斯坦信德省卡拉奇 75270 4 PMAS 干旱农业大学,拉瓦尔品第 44000 巴基斯坦旁遮普省拉瓦尔品第 5 北京林业大学生物科学与技术学院,北京 100091 6 内蒙古农业大学林学院,呼和浩特 010019 7 田纳西大学农业研究所林业、野生动物和渔业系、可再生碳中心,田纳西州诺克斯维尔 37996,美国 8 橡树岭国家实验室生物科学部生物科学联合研究所,田纳西州橡树岭 37831,美国 9 化学与生物工程系田纳西大学诺克斯维尔分校生物分子工程系,美国田纳西州诺克斯维尔 37996
1 宜宾学院农林与食品工程学院,四川省宜宾 644000 2 政府学院大学植物学系,巴基斯坦旁遮普省费萨拉巴德 38000 3 卡拉奇大学数学系,巴基斯坦信德省卡拉奇 75270 4 PMAS 干旱农业大学,拉瓦尔品第 44000 巴基斯坦旁遮普省拉瓦尔品第 5 北京林业大学生物科学与技术学院,北京 100091 6 内蒙古农业大学林学院,呼和浩特 010019 7 田纳西大学农业研究所林业、野生动物和渔业系、可再生碳中心,田纳西州诺克斯维尔 37996,美国 8 橡树岭国家实验室生物科学部生物科学联合研究所,田纳西州橡树岭 37831,美国 9 化学与生物工程系生物分子工程,田纳西大学诺克斯维尔分校,诺克斯维尔,田纳西州 37996,美国 * 通讯地址:sarazafar@gcuf.edu.pk (Sara Zafar);zuhair@uaar.edu.pk (Zuhair Hasnain);abbas2472@hotmail.com (Manzar Abbas)
摘要:非生物胁迫,主要是干旱、高温、盐碱、寒冷和涝渍,对谷物作物产生不利影响。它们限制了全球大麦的生产并造成了巨大的经济损失。多年来,人们已鉴定出大麦在各种胁迫下的功能基因,随着现代基因编辑平台的引入,抗逆性基因改良也发生了新的转变。特别是,成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 是一种用于精确突变和性状改良的强大而多功能的工具。在这篇综述中,我们重点介绍了主要大麦生产国受胁迫影响的地区及其相应的经济损失。我们整理了大约 150 个与抗逆性相关的关键基因,并将它们组合成一个物理图谱,用于潜在的育种实践。我们还概述了精确碱基编辑、主要编辑和多路复用技术在有针对性性状修饰中的应用,并讨论了当前的挑战,包括高通量突变体基因分型和基因型依赖性在遗传转化中的应用,以促进商业育种。所列出的基因可以抵消干旱、盐度和营养缺乏等主要压力,相应基因编辑技术的潜在应用将为大麦改良以提高其气候适应能力提供参考。
甲基磺酸乙酯 (EMS) 诱导的诱变是生成遗传资源的有力工具,可用于识别未开发的基因和表征基因的功能,以了解重要农学性状的分子基础。本综述重点介绍当代 EMS 诱变在植物发育和非生物胁迫耐受性研究领域的应用,特别着重回顾突变类型、诱变位点、诱变剂浓度、诱变持续时间、导致胁迫耐受性改变的突变的识别和表征。本文还讨论了 EMS 突变育种与基因工程相结合在未来植物育种和基础研究中的应用。本综述中的集体信息将为如何有效应用 EMS 诱变来提高作物的非生物胁迫耐受性提供良好的见解,并使用下一代测序 (NGS) 进行突变识别。
认证各方根据供应链中的下一个要素发出可持续性声明,该量基于对特定地点的质量平衡中的所有传入和即将到来的文档的文件
摘要:干旱、盐度和极端温度等非生物胁迫是全球农作物生产力的主要限制因素,预计气候变化将加剧这些因素。活性氧 (ROS) 的过量产生是许多非生物胁迫的常见后果。抗坏血酸,也称为维生素 C,是植物细胞中最丰富的水溶性抗氧化剂,可以直接作为 ROS 清除剂对抗氧化应激,或通过抗坏血酸-谷胱甘肽循环(植物细胞中的主要抗氧化系统)对抗氧化应激。因此,通过工程改造具有增强抗坏血酸浓度的作物有可能促进广泛的非生物胁迫耐受性。已经采用了三种不同的策略来增加植物中的抗坏血酸浓度:(i) 增加生物合成,(ii) 增强循环,或 (iii) 调节调节因子。在这里,我们回顾了植物中抗坏血酸生物合成、循环和调节的遗传途径,包括迄今为止用于增加模型和作物物种中抗坏血酸浓度的所有代谢工程策略的总结。然后,我们重点介绍利用基因组编辑工具来增加作物中抗坏血酸浓度的非转基因策略,例如编辑控制 GDP-L-半乳糖磷酸化酶基因翻译的高度保守的上游开放阅读框。
• 5325 转基因与植物细胞遗传学,德克萨斯理工大学。“染色体和基因组织、DNA 结构和复制” • PLNT_SCI_4550/7550,植物生物技术,密苏里大学。“植物组织培养和转化方法” • 植物生物技术 (AGRO/BIOTC 460):宾夕法尼亚州立大学。“植物组织培养和转化方法”。• 高级植物遗传学 (2021FS BIO_SC 8300):跨学科植物组 (IPG),密苏里大学。“农杆菌介导的植物转化” • 高级植物遗传学 (2020FS BIO_SC 8300):跨学科植物组 (IPG),密苏里大学。“农杆菌介导的植物转化” • 高级分子遗传学 (NRE-763),阿拉巴马农工大学生物与环境科学系 (BES)。(高级基因组工具和 NGS 技术在植物遗传学中的应用、分子工具:通过 RNAi 和基因组编辑技术进行基因沉默、植物转化技术、转基因植物:对非生物和生物胁迫的抗性、转基因植物的发展和放松管制) • 人类疾病遗传学 (CPHD-725),南达科他大学桑福德医学院。(孟德尔疾病:显性和隐性疾病及案例示例) 研究资金 年份 状态 机构 角色 总资金 我的部分 2023 待定 USDA-ARS,Scab 计划