在本节中,我们将详细讨论有关微生物在改善土壤质量和植物对非生物胁迫的耐受性方面的作用的文献观察的主要发现。主要讨论的重点将涵盖土壤的非生物胁迫。讨论将基于对相关文献的深入审查,以及这些发现与土壤的非生物胁迫的相关性。本研究以批判性文献分析的形式进行,旨在传播与理论和学术方面相关的文献中包含的信息、概念和结果。数据分析方法:使用描述性和推论性统计数据分析土壤质量和植物生长测量数据,以确定微生物对土壤质量和植物耐受性的影响(Kumar et al.al.2021)。结果与讨论
玉米(Zea Mays)是印度的第三大谷物作物,它是至少30%人口的主要食物来源,在全球占有9亿贫困人口。不断增长的人口导致对玉米谷物的需求不断增长。然而,玉米种植面临着各种环境因素,包括生物胁迫和非生物胁迫,面临着显着的挑战。非生物压力,例如盐度,极端温度和干旱,以及细菌,真菌和病毒感染等生物因素,在全球范围内大大降低了玉米生产和谷物质量。这些应力之间的相互作用很复杂;例如,非生物压力会增强植物对病原体的敏感性,而过多的害虫可以加剧该植物对环境压力的反应。鉴于这些相互作用的复杂性,综合研究对于了解生物和非生物应力的同时存在如何影响作物生产力至关重要。尽管这个问题很重要,但缺乏有关这些压力组合如何影响玉米在关键农业地区中的全面数据。本综述着重于开发耐酸性应激的玉米品种,这对于将来保持农作物产量至关重要。一种有前途的方法涉及使用植物生长促进性根瘤菌(PGPR),土壤细菌,将根际定居并与植物组织相互作用。科学家越来越多地探索微生物策略,以增强玉米对生物和非生物胁迫的抵抗力。在整个培养过程中,害虫和微生物对玉米构成了显着威胁,从而减少了谷物的数量和质量。在导致玉米降解的各种因素中,昆虫最为普遍,其次是真菌感染。
内布拉斯加大学林肯分校非生物胁迫耐受性博士后职位 内布拉斯加大学林肯分校 Walia 实验室现提供博士后职位,研究水稻和玉米的耐热和耐旱机制。该职位将利用全植物生理学、表型组学和分子方法,专注于谷物对耐热和耐旱胁迫反应的分子和遗传学表征。该项目的目标是从分子层面理解发育事件与非生物胁迫之间的相互作用。具有基因编辑、突变体分析、种子生物学、分子相互作用和/或表达分析方面的经验者优先考虑。应聘者必须拥有植物生物学、分子生物学或植物遗传学或密切相关领域的博士学位。有出版作品证据并对使用分子和功能基因组学方法有浓厚兴趣的候选人将优先考虑。薪水与经验和资历相称。感兴趣的候选人请通过电子邮件向 Harkamal Walia 博士(hwalia2@ unl.edu)申请。请在您的电子邮件中包含以下内容:(1) 简历和 (2) 3 位推荐人的联系信息。如需更多信息,请访问:https://www.unl.edu/psi/harkamal-walia ; https://agronomy.unl.edu/walia ; https://www.unl.edu/psi/ ;
摘要:杂交育种、诱变育种和传统的转基因育种需要花费大量时间来改善所需的特性/性状。CRISPR/Cas 介导的基因组编辑 (GE) 是一种改变游戏规则的工具,它可以在更短的时间内产生所需特性(例如生物和非生物抗性)的变异,提高质量和产量,并且易于应用、效率高、成本低,可以快速改良作物。植物病原体和恶劣的环境在世界范围内造成了相当大的农作物损失。GE 方法的出现为培育多种抗性作物品种打开了新的大门。本文,我们总结了 CRISPR/Cas 介导的 GE 在作物分子育种计划中抗生物和非生物胁迫的最新进展,其中包括修改和改进对真菌、病毒和细菌病原体引起的生物胁迫的基因反应。我们还深入讨论了 CRISPR/Cas 在植物非生物胁迫(除草剂、干旱、高温和寒冷)中的应用。此外,我们讨论了育种者使用转基因工具进行作物改良所面临的局限性和未来挑战,并提出了转基因农业应用未来改进的方向,为培育具有广泛抗生物和非生物胁迫能力的超级品种提供了新思路。
全球超过一半的人口取决于大米作为主要的粮食作物。大米(Oryza sativa L.)容易受到非生物挑战的攻击,包括干旱,寒冷和盐度,因为它在半偏生,热带或亚热带环境中生长。非生物应激性抗性已繁殖到水稻植物中。在发现基因组之前,使用正向遗传学方法鉴定了非生物应激相关的基因,并且使用传统的育种方法开发了耐非生物应激的线条。动态转录组表达表示在其生长和发育中特定点的单个生物体的特定细胞,组织或器官中的基因表达程度。转录组学可以在整个转录水平的压力条件下在整个基因组水平上揭示表达,这可以有助于理解与植物的胁迫耐受性和适应性有关的复杂的调节网络。水稻(Oryza sativa L.)基因家族使用其他植物物种的参考基因组序列相对发现,从而允许全基因组鉴定。通过基因表达填充的转录组学,最近由RNA-Seq统治了基因组技术。 所有这些基因组和转录组技术使参与水稻反应的众多重要QTL,S基因,启动子元素,转录因子和miRNA都成为可能。 在本综述中讨论了使用几种基因组和转录组方法来理解水稻(Oryza sativa,L。)承受非生物压力的能力通过基因表达填充的转录组学,最近由RNA-Seq统治了基因组技术。所有这些基因组和转录组技术使参与水稻反应的众多重要QTL,S基因,启动子元素,转录因子和miRNA都成为可能。在本综述中讨论了使用几种基因组和转录组方法来理解水稻(Oryza sativa,L。)承受非生物压力的能力
摘要:鹰嘴豆是世界上最重要的豆类作物之一,是极好的蛋白质来源。它在雨养条件下生长,平均产量为 1 吨/公顷,远低于最佳条件下 6 吨/公顷的潜力。高温、低温、干旱和盐度的综合影响会影响物种的生产力。在这方面,回顾了几种赋予对非生物胁迫耐受性的生理、生化和分子机制。近 100,000 个鹰嘴豆种质的大量收集是育种计划的基础,通过常规育种,如种质引进、基因/等位基因渗入和诱变,已经取得了重要进展。同时,分子生物学和高通量测序的进展使得能够开发出针对鹰嘴豆属的特定分子标记,从而促进产量成分和非生物耐受性的标记辅助选择。此外,转录组学、蛋白质组学和代谢组学已使我们能够识别与鹰嘴豆对非生物胁迫的耐受性相关的特定基因、蛋白质和代谢物。此外,在转基因植物和使用基因编辑获得耐旱鹰嘴豆的研究中也取得了一些有希望的结果。最后,我们提出了一些未来的研究方向,这些研究方向可能有助于在气候变化的情况下获得对非生物胁迫具有耐受性的鹰嘴豆基因型。
植物对渗透压的适应性 - 干旱,盐度和其他非生物压力的结果 - 鉴于其对农业生产力和粮食安全的影响,是植物生物学的关键重点(Lim等,2015; Zareen等,2024)。在信号转导网络中,从应力信号的感知到应激响应性基因表达,各种转录因子和应力反应性启动子中的顺式调节元件在植物适应对非生物胁迫的适应中起着关键作用。此外,基因表达的转录后调节是由RNA代谢介导的(Lee等,2006; Kim等,2017; Park等,2024)。转录激活因子和阻遏物之间的平衡对于适当的基因表达和对非生物应激的反应至关重要(Seok等,2022)。该研究主题巩固了在理解渗透压力反应背后的遗传调节机制方面的最新进展,其中包含七项研究探索植物适应性的分子,生化和基因组维度的研究。
非生物应力,包括干旱,盐度,冷,热和重金属,可广泛减少全球农业生产。传统的育种方法和转基因技术已被广泛用于减轻这些环境压力的风险。在作物应激响应基因和相关的分子网络中,发现工程核酸酶作为遗传剪刀,以进行精确的操纵,为可持续的非生物压力条件铺平了道路。在这种情况下,基于基于基于基因的基因编辑工具的定期间隔间隔短的短质重复cas(CRISPR/CAS),由于其简单性,可及性,适应性,灵活性和广泛的适用性而进行了革新。该系统具有巨大的潜力,可以增强对非生物压力的耐受性。在这篇综述中,我们总结了有关理解植物中非生物应激反应机制的最新发现以及CRISPR/CAS介导的基因编辑系统的应用,以增强对多种压力的耐受性,包括干旱,盐度,寒冷,冷,热和重金属。我们提供了有关基于CRIS/CAS9的基因组编辑技术的机械见解。我们还讨论了不断发展的基因组编辑技术的应用,例如素数编辑和基础编辑,突变图书馆生产,不含转基因和多重多重,以迅速提供适合非生物应力条件的现代作物品种。
生物多样性是所有生命赖以生存的基本资源的基础。“生态系统”一词描述了一群生物、它们的群落以及它们与空气、水、岩石和土壤等物理(非生物)环境的动态相互作用。在生态系统中,环境的所有方面(生物多样性和非生物环境)相互作用并相互影响。“生态系统服务”是自然界对人类有益的生态过程,例如昆虫为农作物授粉或湿地减弱洪水。这些对我们的社会、经济发展、健康和福祉至关重要,每年为爱尔兰经济带来数十亿欧元的价值。