1美国杜克大学医学院,美国北卡罗来纳州达勒姆大学医学院,美国2杜克大学血液学典型科学系高维细胞多摩学数据对于理解生物控制的各个层次至关重要。单一的'Omic方法提供了重要的见解,但在处理基因,蛋白质,代谢产物以及其他方面的复杂关系方面常常缺乏。在这里,我们提出了一种称为Gaudi的新颖,非线性和无监督的方法(通过UMAP数据集成进行组聚集),该方法利用独立的UMAP嵌入来进行多种数据类型的并发分析。Gaudi比几种最先进的方法更好地发现不同的OMIC数据之间的非线性关系。这种方法不仅通过它们的多摩尼克曲线群簇样本,而且还识别了每个OMICS数据集的潜在因素,从而促进对每个群集有助于的基本特征的解释。因此,Gaudi促进了更直观,可解释的可视化,从而从广泛的实验设计中识别出新颖的见解和潜在的生物标志物。引言多摩变分析整合了各种数据类型,例如基因组学,蛋白质组学和代谢组学。组合多种OMICS模式比单独分析每种数据类型时,有可能发现新颖的见解和生物标志物(1,2)。高通量技术的增长促使OMICS数据呈指数增加,这突显了对新的集成方法的迫切需求。传统的多摩学集成方法主要集中在降低尺寸技术上。例如,在RGCCA(3)中使用了基于规范相关分析(CCA)的方法,而MCIA中使用了共惯性分析(4)。同样,贝叶斯因子分析基于MOFA+(5)等方法,负基质分解对于Intnmf(6),主成分分析(7)和独立组件分析是TICA(8)的基础。尽管这些方法已在各种OMICS数据集和生物环境中应用,但它们的有效性和局限性各不相同,强调了在其应用中需要仔细考虑的需求(9)。这些方法共享的中心限制是它们对线性假设的依赖。虽然在某些情况下合适,但这种假设可能不足以准确捕获复合物,通常是非线性的相互作用(10,11)。此外,它们的计算强度构成了挑战,尤其是对于大型数据集。应对这些挑战,最近的进步已转向非线性整合方法(9,10)。均匀的歧管近似和投影(UMAP)是一种降低技术,可以揭示复杂数据集中的基础结构(12)。通过将流形学习与拓扑数据分析相结合,它可以有效地可视化较低空间中的高维数据。UMAP通过有效地从PCA和T-SNE等其他方法中脱颖而出
摘要在讨论量子力学的解释时,术语“ ontic”和“认知”通常是根据与存在的事物以及与认知或知识有关的。这些术语通常与Harrigan和Spekkens在本体模型框架的背景下给出的量子力学的波函数相关。形式的定义是矛盾的,因此波函数可以是ψ-上皮或ψ-接触,但不能同时进行。但是,我们认为,关于认知和原性解释的非正式思想排除了代表现实和知识的波段。根据我们的分析,可以重新考虑Pusey -Barrett – Rudolph定理以及许多其他问题。
摘要。尽管大规模预处理的视觉模型(VLM)尤其是在各种开放式播放任务中的剪辑,但它们在语义细分中的应用仍然具有挑战性,从而产生了带有错误分段区域的嘈杂分段图。在本文中,我们仔细地重新调查了剪辑的架构,并将残留连接确定为降低质量质量的噪声的主要来源。通过对剩余连接中统计特性的比较分析和不同训练的模型的注意力输出,我们发现剪辑的图像文本对比训练范式强调了全局特征,以牺牲局部歧视,从而导致嘈杂的分割结果。在响应中,我们提出了一种新型方法,该方法是分解剪辑的表示形式以增强开放式语义语义分割的。我们对最后一层介绍了三个简单的修改:删除剩余连接,实现自我关注并丢弃馈送前进的网络。ClearClip始终生成更清晰,更准确的绘制图,并在多个基准测试中胜过现有的方法,从而确认了我们发现的重要性。
与当地中心和较小的定居点有关,绝对至关重要的是,景观特征和历史性发展模式被优先考虑而不是任意密度标准。例如,三位一体的最新发展,圣约翰和圣玛丽未能反映出历史性的定居点模式,导致着密集的发展,这些模式在其乡村环境中感到不舒服。毫无疑问,这是密度驱动的,没有足够的总体规划和设计标准。因此,这些定居点的性质受到了破坏,而不是因新发展而积极增强和执行。因此,人们担心,通过以这种方式设定确定的密度标准,目前缺乏这些解决方案的长期计划将进一步加剧。
随着时间的流逝,房屋如何以及为什么如何致密?这种增长的影响是什么?什么样的限制会影响其改变的潜力?这项研究探讨了建立形式的变化和致密化,从19世纪住房计划的渐进转型CitéOuvrière在法国东部的Mulhouse提供了历史证据。这项颗粒状纵向形态学研究使用历史规划应用和图像来绘制165年期间1253户单户房屋的外部体积转换。该研究将档案工作与三维(3D)结构建模和高级密度方法结合在一起,以记录,可视化,分析和评估微观层的致密过程。统计计算跟踪致密过程,而码头工具分析了对不同建筑类型和整个社区的开放空间消耗的影响。结果突出了七种类型的转换,受到七个物理变化驱动因素的影响。致密化是通过构建强化或情节联合/细分表现出来的,其程度取决于非建造空间的消耗程度。这些取决于原始设计施加的社会经济,法律和身体约束。
摘要 - 通过利用亚波长等离子设备来实现紧凑的光学整合电路,需要设计紧凑和有效的光子对等离激元模式转换器的设计。尤其是对于需要多个转换器的等离子多输入设备,例如逻辑门,可以在很大程度上通过光子波导将足迹构成,这应该在设计中考虑。在这项工作中,我们为应用多输入等离子体设备的应用模拟和基准五个Photonic to for等离子体模式转换器拓扑。我们的设计包括等离子波导的定向和末端耦合方案,以及线和插槽构造的Si光子波导。考虑到光子波导和等离子波导,总足迹以及模式转换效率之间的音高不匹配,我们优化了转换器的性能。
Marit Aure博士,Dir。 Lorena Baccaglini,Der,CCR Alison Boyce博士,Dir。我也是布朗,Der,Research&Research&Carory Development Branch(RTCDB)Christopher Brown博士,DEA,Scientific Review Branch(SRB)Christopher Campbell博士,DEA,SRB Preethi Chander博士,DER,Integraftive Biogy&Intectious Isology&Instectious Isises and Instectious Isases Branch(IBIDB)Jingshan Chen Chen,Dea,Dea,Srb srb srb MS。 Tiffany Chen,OD,通信与健康教育办公室(OCHE),DER,DEA,DEA,SRB MS的Ibidb Aiwu Cheng博士,Der,Der chen博士。 Jennifer Chi,OD,Octom MS。 Der的Alicia Chou,翻译基因组学研究部(TGRB)Kevin Chu先生,OD,OIT,OIT Michelle Cortes博士,Der,Ibidb,Ibidb Brett Dean先生,OD Financial Management Branch(FMB)Jimmy Do,OD,OD,OD,FBM Olga Epifano博士(OSD)Dena Fischer博士,Der,CCR,Melissa Ghim博士,Der,Ibidb,Ibidb博士Margaret Grisius,der,CCR,CCR,Joel Guzman先生,Der,OD MS。 April Harrison,DEA,GMB Belinda Hauser博士,DIR,OSD MS。杰西卡·亨利(Jessica Henry),OSPA,GABRIEL HIDALGO先生,DEA,GMB MS。 Yu-Ling Huang,OSPA,OSPA Timothy Iafolla博士,OSPA,OSPA Hiroko Eid博士,Der,CCR Tomoko Ikeuchi博士,Dir,Osd,OSD Dara Kessler博士,OD Leila Khaki博士,Der,Der,der,BSSRB,BSSRB,BSSRB Wendy Knosp博士Wendy Knosp,Ospa,OSPA OSPA博士Jamie Kugler,Dirl,dir,dir,dir。 Payal Rajender Kumar,OD Robert Kuska先生,OD,Oche Bikash Lamichhane博士,DI,OD Shuang Li博士,Der,Der,OD,Jiwon Lim博士,Jiwon Lim博士,Dir Orlando Lopez,Der,Der,Ibidb,Ibidb William Martin先生Susan Medve,DEA,GMB Yun Mei博士,DEA,SRBMarit Aure博士,Dir。 Lorena Baccaglini,Der,CCR Alison Boyce博士,Dir。我也是布朗,Der,Research&Research&Carory Development Branch(RTCDB)Christopher Brown博士,DEA,Scientific Review Branch(SRB)Christopher Campbell博士,DEA,SRB Preethi Chander博士,DER,Integraftive Biogy&Intectious Isology&Instectious Isises and Instectious Isases Branch(IBIDB)Jingshan Chen Chen,Dea,Dea,Srb srb srb MS。 Tiffany Chen,OD,通信与健康教育办公室(OCHE),DER,DEA,DEA,SRB MS的Ibidb Aiwu Cheng博士,Der,Der chen博士。 Jennifer Chi,OD,Octom MS。 Der的Alicia Chou,翻译基因组学研究部(TGRB)Kevin Chu先生,OD,OIT,OIT Michelle Cortes博士,Der,Ibidb,Ibidb Brett Dean先生,OD Financial Management Branch(FMB)Jimmy Do,OD,OD,OD,FBM Olga Epifano博士(OSD)Dena Fischer博士,Der,CCR,Melissa Ghim博士,Der,Ibidb,Ibidb博士Margaret Grisius,der,CCR,CCR,Joel Guzman先生,Der,OD MS。 April Harrison,DEA,GMB Belinda Hauser博士,DIR,OSD MS。杰西卡·亨利(Jessica Henry),OSPA,GABRIEL HIDALGO先生,DEA,GMB MS。 Yu-Ling Huang,OSPA,OSPA Timothy Iafolla博士,OSPA,OSPA Hiroko Eid博士,Der,CCR Tomoko Ikeuchi博士,Dir,Osd,OSD Dara Kessler博士,OD Leila Khaki博士,Der,Der,der,BSSRB,BSSRB,BSSRB Wendy Knosp博士Wendy Knosp,Ospa,OSPA OSPA博士Jamie Kugler,Dirl,dir,dir,dir。 Payal Rajender Kumar,OD Robert Kuska先生,OD,Oche Bikash Lamichhane博士,DI,OD Shuang Li博士,Der,Der,OD,Jiwon Lim博士,Jiwon Lim博士,Dir Orlando Lopez,Der,Der,Ibidb,Ibidb William Martin先生Susan Medve,DEA,GMB Yun Mei博士,DEA,SRB
Surgical Site Infection (SSI) is defined as an infection at the site of a surgical incision occurring within 30 days of an operation and can be classified as [1] superficial, including the skin and subcutaneous tissue, [2] deep, including the underlying muscle and fascia, or [3] space SSI, including any organs or tissues other than the muscle or fascia [1].SSI是最常见的医疗保健相关感染,导致了几种不良后果,包括增加伤口愈合时间,增加抗生素的使用,较长的医院住院以及总体上更高的医疗保健相关成本[2]。在沙特阿拉伯的一家三级医院进行的一项大型队列研究确定革兰氏阴性细菌是SSIS中最常见的致病生物,最常见的是大肠杆菌,其次是铜绿假单胞菌,铜绿假单胞菌,Klebsiella pneumoniae,Klebsiellaiae和kinetobactobactabacter baumanniai [3]。