诵读困难是一种神经发育障碍,其特征是阅读和/或拼写学习障碍(国际诵读困难协会,里昂等人,2003 年)。许多关于诵读困难的研究集中在语音处理缺陷(Griffiths 和 Snowling,2001 年;Pennington,2006 年;Vellutino 等人,2004 年),即处理单词的基本声音。尽管在这方面取得了很大进展,但对诵读困难的个体差异和其他认知过程(如语义处理)的研究较少。现有的阅读计算模型强调阅读是正字法、语音和语义处理系统动态交互的副产品。例如,并行分布式处理模型(Seidenberg 和 McClelland,1989 年)强调了这些系统的动态产品的重要性。朗读的双路径级联模型(Coltheart 等,2001)描述了三条阅读路径:非词汇阅读路径(通过字素到音素规则系统)、词汇非语义路径(通过正字法/音位输入词典)和词汇语义路径(通过语义系统)。
大脑编码是将刺激映射到大脑活动的过程。关于功能性磁共振成像 (fMRI) 的语言大脑编码,有大量与句法和语义表征相关的文献。脑磁图 (MEG) 具有比 fMRI 更高的时间分辨率,使我们能够更精确地观察语言特征处理的时间。与 MEG 解码不同,使用自然刺激的 MEG 编码研究很少。现有的关于故事聆听的研究侧重于音素和简单的基于单词的特征,而忽略了上下文、句法和语义方面等更抽象的特征。受先前 fMRI 研究的启发,我们使用基本的句法和语义特征,以不同的上下文长度和方向(过去与将来)对 8 名听故事的受试者的数据集进行 MEG 大脑编码研究。我们发现 BERT 表示可以显著预测 MEG,但不能预测其他句法特征或词向量(例如 GloVe),这使我们能够在听觉和语言区域随时间以分布式方式对 MEG 进行编码。特别是,过去的背景对于获得显著的结果至关重要。索引术语:大脑编码、人机交互、MEG、句法、语义、上下文长度
摘要。音乐和语言在结构上相似。这种结构相似性通常用生成过程来解释。本文描述了用于机器人技术中语言学习和符号出现的概率生成模型(PGM)的最新发展。机器人技术中的符号出现旨在开发一个可以适应现实世界环境和人类语言交流的机器人,并仅从感觉运动信息中获取语言(即,以一种不受监督的方式)。这被认为是符号出现系统的建设性方法。为此,已经开发了一系列的PGM,包括用于多种音素和单词发现,词汇获取,对象和空间概念形成以及符号系统的出现的PGM。通过扩展模型,符号出现系统包括一个多代理系统,其中出现符号系统的符号系统被揭示为使用PGMS建模。在此模型中,符号出现可以被视为具有共同的预测编码。本文通过结合“情感基于互感信号的预测编码”和“符号出现系统的预测编码”的理论来扩展这一想法,并描述了音乐中意义出现的可能假设。
• 在当地早期读写能力补救计划中明确退出标准。 • 建立专门针对儿童的团队,让父母/看护人作为平等的合作伙伴,就儿童的读写能力教学做出决策,包括退出个人阅读计划的决定。 • 使用各种数据来源了解学生相对于年级标准的读写能力进步情况。 • 制定流程,让教育工作者和父母/看护人讨论正式和非正式的读写能力数据,就通用教学、阅读干预和进度监控所需的支持达成一致。 • 在个人阅读计划中设定退出个人阅读计划的基准。 • 包括退出个人阅读计划后可能需要暂时保留哪些类型的支持和监控的详细信息。地方教育机构应注意,威斯康星州法规 §§ 118.016 将 5K 的充分进步定义为展示非词或无意义词流畅性和音素分割方面的熟练程度;在 1-2 年级,口语阅读流畅性方面的熟练程度; 3 年级则要求口语阅读流利度和州总结性阅读评估的熟练程度。LEA 有权选择工具和策略来监控技能进步,并应参考评估手册来确定年级熟练程度的基准。
接下来的三章重点讨论与幼儿语言技能特别相关的评估和干预问题。Vandervelden 和 Siegel 提出了一个发展理论框架,用于评估早期语音处理,特别是学习阅读和写作。他们解决了评估语音处理技能的概念和方法挑战。回顾了学习字母文字的基本语音处理能力和语音处理,包括语音重新编码、音素意识、任务多样性和字母知识。介绍了在评估幼儿时代表这种发展方法的任务示例。强调早期评估的必要性,因为它对于提供成功设计特定课程所需的相关信息至关重要。Molfese、Tan、Sarkari 和 Gill 采取了一种理论上相似但方法上不同的方法来评估幼儿的语言技能。介绍了使用出生时获得的电生理测量来预测和评估语言技能的研究。回顾了语音辨别、语音意识和正字法技能的发展。本文探讨了诱发反应电位对后期语言评估的预测能力背后的机制。结论是,需要使用电生理测量和行为测量来识别有语言问题风险的儿童,并可将其作为监测干预训练进展的成功工具。
解码一个人通过脑电图(EEG)从人脑聆听的语音信号可以帮助我们忽略听觉系统的工作原理。线性模型已用于从语音中重建脑电图,反之亦然。最近,人工神经网络(ANN),例如,综合神经网络(CNN)和基于长期的短期记忆(LSTM)架构在建模脑电图与语音之间的关系方面的线性模型优于线性模型。在诱惑将这些模型在实际应用中使用这些模型之前,例如听力测试或(第二)语言理解评估,我们需要知道这些模型正在介绍哪种语音信息。在这项研究中,我们旨在使用不同级别的语音特征分析基于LSTM的模型的性能。该模型的任务是确定两个给定的语音段中的哪个与记录的脑电图匹配。我们使用了低级和高级语音特征,包括:信封,MEL频谱,语音活动,音素标识和词嵌入。我们的结果表明,该模型可阐述有关脑电图中有关沉默,强度和广泛语音类别的信息。此外,包含所有这些信息的MEL频谱图在所有特征中都具有最高的精度(84%)。索引术语:LSTM,CNN,语音解码,听觉系统,EEG
人们已经尝试过多次语音脑机接口 (BCI),在听觉语音感知、显性语音或想象(隐性)语音期间使用侵入性测量(例如皮层电图 (ECoG))来解码音素、子词、单词或句子。从隐性语音中解码句子是一项具有挑战性的任务。这项研究招募了 16 名颅内植入电极的癫痫患者,在 8 个日语句子的显性语音和隐性语音期间记录了 ECoG,每句句子由 3 个标记组成。具体来说,我们应用 Transformer 神经网络模型来从隐性语音中解码文本句子,该模型使用在显性语音期间获得的 ECoG 进行训练。我们首先使用相同的任务进行训练和测试来检查所提出的 Transformer 模型,然后评估该模型在使用显性任务训练以解码隐性语音时的性能。在隐性语音上训练的 Transformer 模型在解码隐性语音时实现了 46.6% 的平均标记错误率 (TER),而在显性语音上训练的模型实现了 46.3% 的 TER (p > 0.05 ; d = 0.07)。因此,收集隐性语音训练数据的挑战可以通过使用显性语音来解决。通过使用几种显性语音可以提高隐性语音的性能。
隐蔽言语,也称为想象言语,是在不移动发声器官或产生任何声音输出的情况下在内部发音音素、单词或句子 [1]。尽管失语症或闭锁综合症等言语相关障碍通常会限制明显的言语产生,但即使在这些情况下,也有可能主动想象说话 [2]。脑机接口 (BCI) 将大脑活动解读为数字形式,作为计算机命令,让用户通过脑信号控制外部设备 [3]。BCI 系统如果能够解码隐蔽言语过程中的脑电活动并将其转化为文字,将改善残疾人的生活质量 [2]。在目前可用于 BCI 系统的神经成像技术中,脑电图 (EEG) 具有经济高效、非侵入性的优势,时间分辨率高达不到 1 毫秒。然而,此类系统也存在一些挑战,包括信噪比低、空间分辨率低以及由于眨眼或肌肉活动而频繁出现伪影 [2]、[3]。此外,尽管已知大脑的某些区域专门用于语音感知和产生,但语音相关任务的空间特征在受试者之间和受试者内部存在相关的差异 [4],这使得寻找一个能够提供可靠解码的模型即使对单个人来说也是一项挑战,即使对单个人来说,也需要几天的时间。
人们已经尝试过多次语音脑机接口 (BCI),在听觉语音感知、显性语音或想象(隐性)语音期间使用侵入性测量(例如脑电图 (ECoG))来解码音素、子词、单词或句子。从隐性语音中解码句子是一项具有挑战性的任务。16 名颅内植入电极的癫痫患者参与了这项研究,在八个日语句子的显性语音和隐性语音期间记录了 ECoG,每个句子由三个标记组成。具体来说,Transformer 神经网络模型被用于从隐性语音中解码文本句子,该模型使用在显性语音期间获得的 ECoG 进行训练。我们首先使用相同的任务进行训练和测试来检查所提出的 Transformer 模型,然后评估该模型在使用显性任务进行解码隐性语音训练时的性能。在隐蔽语音上训练的 Transformer 模型在解码隐蔽语音时实现了 46.6% 的平均标记错误率 (TER),而在显性语音上训练的模型实现了 46.3% 的 TER (p > 0 .05; d = 0 .07 )。因此,可以使用显性语音来解决收集隐蔽语音训练数据的挑战。通过使用几种显性语音可以提高隐蔽语音的性能。
在听觉语音感知,公开的言语,或想象的语音(covert)演讲中,已经对语音脑 - 计算机接口(BCI)进行了用于解码音素,子词,单词或句子的解码,例如电代理图(ECOG)。从秘密语音中解码句子是一项具有挑战性的任务。有16例颅内植入电极的癫痫患者参加了这项研究,并且在公开的言语,秘密语音和八个日本句子的被动聆听期间记录了ECOG,每个句子由三个令牌组成。将变压器神经网络模型应用于Covert语音的解码文本句子,该句子是使用公开语音中获得的ECOG培训的。我们首先使用相同的任务进行训练和测试检查了提出的变压器模型,然后在使用公开或感知任务进行培训时评估了模型的性能,以解码秘密语音。在秘密演讲中训练的变压器模型的平均令牌错误率(TER)为46.6%,用于解码秘密演讲,而在公开语音上训练的模型的可比较TER为46.3%(p>0。05; d = 0。07)。因此,可以使用公开语音来解决秘密语音培训数据的挑战。秘密语音的表现可以通过使用大量公开语音来改善。