全球有超过 17% 的人口无法用电,其中大多数居住在撒哈拉以南非洲和南亚的农村地区。微电网技术是解决农村和偏远地区电气化问题的一个有前途的解决方案;然而,不断增长的电力需求仍然是一个巨大的挑战,导致严重的停电。需求侧管理是应对挑战不可或缺的工具。本文采用基于激励措施和分时电价的数学模型,使用从坦桑尼亚阿鲁沙一个偏远村庄 Ngurdoto 太阳能微电网收集的数据来模拟住宅客户的日常用电模式。根据需求价格弹性的概念评估了客户对价格上涨的响应能力。使用两种需求响应策略,即负荷转移 (LS) 和计划负荷减少 (SLR),结果表明 LS 可分别实现高达 4.87% 的节能、19.23% 的成本节省以及约 31% 和 19% 的峰值降低和功率因数提高。 SLR 方法可节省约 19% 的能源、节省 49% 的成本并提高 24% 的功率因数。因此,本研究的结果可能会使系统比发展中国家目前的公用事业更高效、更稳定。
疗程。参与者被随机分配到 tofersen(20、40、60 或 100 毫克)或安慰剂,在 12 周内分 5 次鞘内给药。在接受最高剂量 tofersen 的患者中,脑脊液 (CSF) 中的 SOD1 水平显著降低。虽然该试验不足以证明临床疗效,但一些接受治疗的患者也显示出临床功能和肌肉力量改善的证据。“我们目前正在进行一项 III 期研究,以研究 tofersen 的疗效和安全性,”Miller 说。“这项研究招募了快速进展和缓慢进展的患者,以便我们充分了解该药物的潜力。”在第二项研究中,两名患有 SOD1 ALS 的患者接受了 SOD1 靶向 microRNA,递送到
摘要 近几年来,我们对 ALS 疾病分子机制的理解取得了长足进步,并迈出了将新研究成果(包括基因治疗方法)转化为临床实践的第一步。同样,在日益复杂的多学科行动背景下,辅助技术的最新出现也大大提高了采用更加个性化的支持和对症治疗方法的可能性,而这仍然是 ALS 管理的基石。在这种快速发展的背景下,我们在此全面介绍了有助于我们了解 ALS 发病机制的最新研究、临床试验的最新结果以及改善 ALS 患者临床管理的未来方向。
尽管有越来越多的证据表明,来自背侧视觉通路的输入对于腹侧通路中的物体 29 过程至关重要,但背侧皮质对这些 30 过程的具体功能贡献仍知之甚少。在这里,我们假设背侧皮质计算物体各部分之间的 31 空间关系(这是形成整体形状感知的关键过程)32,并将此信息传输到腹侧通路以支持物体分类。使用 fMRI 33 对人类参与者(女性和男性)进行研究,我们发现顶内沟 34 (IPS) 中的区域选择性地参与计算以物体为中心的部分关系。这些区域 35 表现出与腹侧皮质的任务依赖性功能和有效连接,36 与其他背部区域不同,例如代表异中心关系、3D 形状和 37 工具的区域。在随后的实验中,我们发现后 IPS 的多变量反应(根据部分关系定义)可用于解码与腹侧物体区域相当的物体类别。此外,中介和多变量有效连接分析进一步表明,IPS 可能解释了腹侧通路中部分关系的表征。总之,我们的结果突出了背侧视觉通路对物体识别的特定贡献。我们认为背侧皮层是腹侧通路的重要输入来源,可能支持根据整体形状对物体进行分类的能力。
大多数日常任务都需要同时控制双手。在这里,我们使用从四肢瘫痪参与者的双侧运动和体感皮层记录的多单元活动来展示双手手势的同时分类。使用针对每只手分别训练的分层线性判别模型对尝试的手势进行分类。在一项在线实验中,手势被连续分类并用于控制两个机械臂进行中心向外运动任务。需要保持一只手静止的双手试验产生了最佳表现(70.6%),其次是对称运动试验(50%)和非对称运动试验(22.7%)。我们的结果表明,可以使用两个独立训练的手部模型同时解码双手的手势,但随着双手手势组合的复杂性增加,使用这种方法进行在线控制变得更加困难。这项研究展示了使用双侧皮层内脑机接口恢复双手同时控制的潜力。
Andrei Vankov是Senko Advanced组件的应用工程师。他从托马斯·爱迪生州立大学(Thomas Edison State College)和宾夕法尼亚州立大学的MSEE获得了学士学位。他的职业生涯始于1993年的Sumitomo Electric Lightwave Corp,当时是一名光纤制造工程师,他在日本横滨使用Kaizen Methods从事活跃和被动组件的工作。作为马萨诸塞州富兰克林的高级光学设计工程师(成立为Advanced Inter Connect)Andrei Vankov开发了各种被动的光学组件和包装集成,以符合Telcordia行业标准。设计了光学互连,包括光学背平(MTP,HBMT,PhD,OGI)和用于高清应用程序的光纤SMPTE兼容广播连接器。在2013 - 2020年,安德烈(Andrei)在诺基亚分区射频系统(RFS)工作,在那里他为LTE RAN发射项目团队提供了领导地位。Andrei拥有光纤互连技术的美国和欧洲几项专利。Andrei拥有光纤互连技术的美国和欧洲几项专利。
纵裂 - 将两个大脑半球分开 中央沟 - 分隔额叶和顶叶 侧裂 - 将额叶、顶叶与颞叶分开 顶枕沟 - 位于内侧表面,将枕叶与顶叶/颞叶分开 距状裂 - 位于枕叶内侧表面 中央前回 - 中央沟前部 - 初级运动区 中央后回 - 中央沟后部 - 初级体感区
致谢:作者承认莱斯特大学临床前研究机构生物医学服务部的帮助和支持,以提供技术支持和对实验动物的照顾。作者要感谢Vaibhav Konanur开发了用于纠正荧光痕迹的分析方法,Leon Lagnado用于初始光度法实验中使用的友善借贷设备,以及Andrew Macaskill和Andrew Macaskill进行有关分析的有用讨论。这项工作由生物技术和生物科学研究委员会资助[授予J.E.M.的BB/M007391/1。],欧洲委员会[授予J.E.M.的GART#631404],Leverhulme Trust [授予#RPG-2017-417 to J.E.M.和J.A-S。]和TromsøResearchFoundation [授予J. E. M.的19-SG-JMCC)。