摘要 医疗保健技术的进步要求开发高效、微型的植入式医疗设备。本文介绍了一种用于头皮生物医学应用的超宽带植入式天线,涵盖工业、科学和医疗 (ISM)(2.4 − 2.48 GHz)频段。所提出的天线安装在 0.1 − mm 厚的液晶聚合物 (LCP) Roger ULTRALAM(tan δ = 0.0025 和 ε r = 2.9)上,用作覆盖层和基底层的介电材料。LCP 材料因其柔韧性、顺应性结构和生物相容性等理想特性而广泛用于制造电子设备。为了保持电气小辐射器的能力并实现最佳性能,所提出的天线的体积设计为 9.8 mm3(7 mm × 7 mm × 0.2 mm)。在辐射贴片中增加短路针和开口槽,以及在接地平面中增加封闭槽,有利于天线的小型化、阻抗匹配和带宽扩展。值得注意的是,该天线在 ISM 频段的峰值增益为 − 20.71 dBi,阻抗匹配带宽为 1038.7 MHz。此外,根据基于低特定吸收率的 IEEE C905.1-2005 安全指南,该天线可以安全使用。为了评估植入式天线的性能,在均质和异构环境中进行了有限元仿真。为了验证,在装满碎猪肉的容器中进行测量。模拟结果与测量结果一致。此外,还进行了链路预算分析,以确认无线遥测链路的稳健性和可靠性,并确定植入式天线的范围。
COVID-19 和肥胖症是两种重叠的大流行病。1 与不肥胖的人相比,肥胖患者感染 SARS-CoV-2 后出现更严重临床后果的风险更高。2、3 肥胖还与已知的严重 COVID-19 风险因素有关,例如糖尿病和高血压。无论是否存在合并症,体重过重都会导致生物力学和全身因素,从而增加不良后果的风险。腹压增加和膈肌向上移位会导致呼气储备量、功能能力和呼吸系统顺应性下降。此外,肥胖相关的全身代谢改变包括胰岛素抵抗、脂肪因子改变(例如瘦素增加和脂联素减少)和慢性低度炎症。3 炎症趋化因子增加可能导致内皮功能障碍并加剧血栓形成前状态。初步研究表明,肥胖小鼠由于病毒清除延迟、继发性细菌感染数量增加以及呼吸道上皮损伤加剧,病毒脱落时间延长。4 此外,COVID-19 疫苗对肥胖人群的有效性可能较低,因为全身细胞因子产生的基线变化可能导致疫苗接种后的先天和适应性免疫反应减弱和延迟。1 肥胖人群接种流感疫苗的有效性降低 5 初步结果表明,接种两剂 BNT162b2 mRNA 疫苗后,抗 SARS-CoV-2 刺突 IgG 抗体浓度降低。6
纸张凭借其柔韧性和顺应性、亲水性和高机械强度等优良特性,已成为诊断设备中极具竞争力的基材。[7–10] 这些优异的特性使纸张在纸基设备制造中具有优异的性能。此外,它还环保、可重复使用/回收、可生物降解和生物相容性好。[9,11–13] 出于这些原因,随着全球对“绿色电子”的趋势和承诺,纸基传感器越来越受到关注。因此,本文提出了一种通过 IJP 技术开发传感器的灵活、一次性且低成本的解决方案。纸基分析设备(PAD)利用其微流体特性,成为开发灵活、一次性和更简单的设备的焦点。 [14–16] PAD 通常包括使用蜡印、光刻或化学气相沉积等技术在纸上图案化的亲水/疏水微结构排列。 [17] 2009 年,Dungchai 等人 [18] 展示了 PAD 与电化学传感器 (ePAD) 的组合如何比单微电极检测或比色 PAD 传感器实现更可靠的测量。 [19] 电化学检测是一种颇具吸引力的纸基微流体替代检测方案,因为它体积小、便携性强、成本低、灵敏度高,并且通过适当选择检测电位和/或电极材料可实现高选择性。 [20] 因此,电化学检测广泛应用于从临床诊断到环境生物传感的分析测量中。 [21–25]
用于神经假体的有机电子器件 MJI Airaghi Leccardi 和 D. Ghezzi 美敦力神经工程主席,神经假体中心和生物工程研究所,洛桑联邦理工学院工程学院,日内瓦 1202,瑞士。电子邮件:diego.ghezzi@epfl.ch 神经假体旨在通过利用植入式和可穿戴设备的技术进步来恢复受损或丧失的神经和心理功能。神经接口等植入式设备的性能依赖于生物和机器之间的协同作用。如果缺乏这种协同作用,可能会出现许多不良后果,如排斥、感染或故障。柔软度、电化学行为、生物相容性和生物降解性等材料特性都会影响神经接口的可靠性。在这篇综述中,我们描述了现代聚合物基底和有机电极,它们提供了这些特性的最佳组合。它们在融合不同特性方面的多功能性源于对其分子结构和混合的可控性。与无机材料相比,有机材料对软组织的机械顺应性更佳,而共轭聚合物在与电解液的界面处也具有有利的电化学传输机制,涉及离子和电子电导率。因此,全聚合物神经接口将具有多种优势,包括低成本制造、更高的生物相容性、重量轻、透明性以及与绿色电子产品的亲和性。本综述还重点介绍了支持基于有机材料开发安全电子接口的材料策略,这些策略对各种应用的神经假体都有益。
摘要 目的。基础、转化和临床神经科学越来越关注大规模侵入性神经元活动记录。然而,对于大型动物(如非人类灵长类动物和人类)而言,与啮齿类动物相比,它们的脑部较大,脑沟和脑回更具有挑战性,因此,在长时间内同时记录大脑任何位置的数百个神经元方面存在巨大的未满足需求。在这里,我们测试了插入两只猕猴初级视觉皮层的薄而柔韧的多电极阵列 (MEA) 的电气和机械特性,并评估了它们的磁共振成像 (MRI) 兼容性及其在 1 年内记录细胞外活动的能力。方法。为了将浮动阵列插入视觉皮层,20 x 100 µ m 2 轴通过可吸收的聚乳酸-乙醇酸共聚物涂层暂时加固。主要结果。手动插入阵列后,阵列的体外和体内 MRI 兼容性被证明是极好的。我们记录了多达 50% 的电极的清晰单元活动,以及 60%–100% 的电极的多单元活动 (MUA),从而可以详细测量受体场和神经元的方向选择性。即使在插入 1 年后,我们仍然在 70%–100% 的电极上获得了显著的 MUA 反应,而受体场在整个记录期间保持非常稳定。意义。因此,与现有阵列相比,我们测试的薄而柔韧的 MEA 具有几个关键优势,最显著的是脑组织顺应性、可扩展性和脑覆盖率。未来人类的脑机接口应用可能会从这种新一代长期植入式 MEA 中受益匪浅。
摘要 可以使用侵入性方法监测脑血流 (CBF) 自身调节 (AR),例如颅内压 (ICP) 和动脉血压 (ABP),以计算 CBF AR 指数 (PRx)。监测 PRx 可以减少患者继发性脑损伤的程度。脑血流图 (REG) 是一种经 FDA 批准的测量 CBF 的非侵入性方法。REGx 是一种 CBF AR 指数,是根据 REG 和手臂生物阻抗脉冲波计算得出的。我们的目标是测试 REG 的神经监测效果。对 13 名神经重症监护患者进行了 28 次测量。使用生物阻抗放大器和定制软件在笔记本电脑上记录 REG/手臂生物阻抗波形。同一程序用于离线数据处理。病例 #1:患者平均 REGx 从第一天的 -0.08 增加到第二天的 0.44,表明颅内顺应性 (ICC) 恶化 (P < 0.0001,CI 0.46–0.58)。两天的格拉斯哥昏迷量表 (GCS) 均为 5。病例 #2:REGx 从第一次记录的 0.32 降低到最后一次记录的 0.07 (P = 0.0003,CI -0.38 至 -0.12)。GCS 分别为 7 和 14。病例 #3:在 36 分钟的记录中,REGx 从 0.56 降低到 -0.37 (P < 0.0001,95%,CI -1.10 至 -0.76)。中心静脉压从 14 mmHg 变为 9 mmHg。 REG 脉搏波形态从 ICC 较差变为 ICC 形态良好。生物阻抗记录可以量化 CBF AR 的主动/被动状态,指示 ICC 的恶化并实时呈现。REGx 可以作为 PRx 的合适、非侵入性替代方案,用于头部受伤患者。
I. 简介 许多研究人员已经基于多孔弹性构建了脑积水的计算理论。此类模型将有助于更好地理解问题,从而提供更好的治疗方法。此类模型还忽略了分流术的间歇性影响,而分流术是治疗脑积水最常用的方法。我们使用弹性和流体力学来创建人脑和脑室系统的数学模型。我们的模型通过考虑跨导水管的流动并包括边界约束来扩展以前的工作。这将为疾病的边界和改善创建一个定量模型。我们开发并解决了该模型的控制方程和边界条件以及有意义的临床发现。我们的模型通过将导水管流与边界约束结合起来,扩展了早期对脑积水的研究。脑脊液沿着脊髓周围的蛛网膜下腔向下流动,然后进入颅脑蛛网膜下腔,然而,物理定律很难解释这种流动是如何持续的。采用体内刺激的数学方法来研究脉动血液、脑和脑脊液的动态相互作用 1 。本文介绍的模拟是为患有脑脊液生理病理疾病脑积水的个体生成的 2 。研究特发性脑积水化学浓度不对称循环的后脑室通透性 3 。使用基本的几何模型,当前的研究提出了一种全新的脑积水多物理扩散过程方法,并作为更复杂的几何模拟的标准 4 。研究了脑脊液在心血管和蛛网膜下腔的循环以及脑脊液渗入多孔脑实质的问题。开发了复杂大脑几何形状的边界条件 5 。将标准受试者的研究信息与代表颅内动力学的实际计算模型进行了比较。该模型利用特定于受试者的磁共振 (MR) 图像和物理边界条件作为输入,可重现脉动的脑脊液循环并模拟颅内压力和流速 6 。该数值模型用于探索横截面几何形状和脊髓运动如何影响非稳定速度、剪应力和压力梯度场 7 。该系统分为五个子模型:动脉系统血液、静脉系统血液、心室脑脊液、颅内蛛网膜下腔和脊髓出血腔。阻力和顺应性将这些子模型连接起来。构建的模型用于模拟七个健康个体中发现的关键功能特征,例如动脉、静脉和脑脊液流量分布(幅度和相移) 8 。此前,利用时间分辨三维磁共振速度映射研究人体血管系统中健康和异常的血流模式。利用这种方法研究了 40 名健康志愿者 9 的脑室系统中脑脊液流量的时间和空间变化。这些颗粒中的脑脊液和血液之间的屏障很小,使脑脊液能够流入循环并被吸收。与脑脊液的产生相反,消耗是压力-
基于皮层脑电图 (ECoG) 的双向脑机接口 (BD-BCI) 引起了越来越多的关注,因为:(1) 需要同时进行刺激和记录以恢复人类的感觉运动功能 [1] 和 (2) 良好的空间分辨率和信号保真度以及临床实用性。在刺激方面,这种 BD-BCI 可能需要 >10mA 的双相电流来引发人工感觉,以及 >20V 的电压顺应性以适应各种生物阻抗 [1]。两个刺激相之间的电荷不匹配会导致电压积累,从而造成电极腐蚀和组织损伤。现有的电荷平衡 (CB) 技术,例如电荷包注入 (CPI) [2] 和基于时间的电荷平衡 (TCB) [1],会在脉冲间隔内产生 CB 电流,导致不必要的二次感觉和过度的刺激伪影 (SA)。对于记录,低输入参考噪声 (IRN) 是获取小神经信号 (NS) 所必需的,而大动态范围 (DR) 则是容纳大 SA 所必需的。现有的记录系统采用 SAR [1] 或连续时间 delta-sigma (CT-ΔΣ) [3] ADC(图 4)。前者由于 DAC 不匹配而具有有限的 DR,而后者则受到环路延迟内大幅度尖锐 SA 引起的失真的影响。尽管在 [4] 中,ΔΣ-ADC 的采样频率会自适应地变化以适应 SA,但所需的稳定时间很长。为了解决上述问题,本文提出了一种基于 ECoG 的 BD-BCI,其中包括:(1) 具有双模基于时间的电荷平衡 (DTCB) 的高压 (HV) 刺激系统和 (2) 高动态范围 (HDR) 时域流水线神经采集 (TPNA) 系统。图 1 描绘了所提出的 BD-BCI。刺激系统包括 4 个刺激器,每个刺激器包括一个 8 位分段电流控制 DAC 和一个 HV 输出驱动器,用于生成刺激脉冲。为了执行 CB,每个刺激器都采用具有 2 种模式的 DTCB 环路,即无伪影 (AL) TCB 和脉冲间有界 (IB) TCB 模式。3 阶 II 型 PLL 为基于时间的量化创建所需的时钟。记录系统有 4 个通道,每个通道都采用低增益模拟前端 (LG-AFE)、HDR 电压时间转换器 (VTC)、两步流水线 (TSP) TDC 和一个数字核心,其中操作模式由状态机控制。受 [1] 的启发,所提出的 DTCB 的工作原理如图 2 所示。AL-TCB 监测电极电压 V ESn -V CM (1≤n≤N;此处,N=4)并调整后续刺激脉冲的幅度而不产生额外的 SA,而当 |V ESn -V CM | 过大而需要立即去除电荷时,IB-TCB 在下一个刺激脉冲之前完成 CB。在第一个 T CC 开始时,如果 |V ESn - V CM |≤V TH,AL (V TH,AL 是标志着需要立即去除电荷的过电位阈值),则 AL-TCB 导通,并且 V ESn - V CM 在第一个 T CC 周期内由 VTC 和 TDC 数字化。然后将数字数据 D TDCn 馈送到通道间干扰消除 (ICIC) 模块,该模块可补偿由于多极刺激导致的通道间干扰 (ICI) 引入的电压误差。接下来,数字直流增益增强器 (DDGB) 有助于提高 CB 精度,而不会降低 AL-TCB 环路稳定性。为了执行 CB,AL-TCB 的电流(例如,I AL-Cn )(其大小由 DDGB 输出 D ALn 控制)被添加到后续刺激电流中以调整其大小。相反,仅当 |V ESn -V CM |>V TH,AL 时,IB-TCB 才会开启并在一个 T IP 内的几个 T CC 中执行 CB,直到 |V ESn - V CM |