脑血流 (CBF) 和脑容量的缓慢振荡最近成为一个热门话题,因为这些缓慢振荡与脑内的脑脊液 (CSF) 运动有关,并可能促进血流过脑间质以清除溶质和有毒代谢物,这一过程称为淋巴流动 (1)。颅内 EEG、MRI 血氧水平依赖性 (BOLD) 信号和 CSF 波 (2) 的耦合缓慢同步振荡似乎共同在驱动 CSF 运动方面发挥着关键作用,尤其是在慢波 (delta 波) 睡眠活动期间。此外,这些类型的振荡发生在与颅内 B 波相同的频率范围内,而 B 波也是 CBF 和颅内压 (ICP) 规律同步波动的结果,其来源不明 (3)。这种关联促使我们分析了之前在 B 波期间进行的 MCA 速度和 ICP 的颅内记录中的其他频率参数和波形特征(3),并将它们与已发表的 MRI CBF 慢波测量结果(2、4-9)进行比较,以确定这些实体之间的相似性。颅内压 B 波最初被描述为以每分钟 0.5 到 2 个周期发生的规则重复 ICP 振荡,其来源已证明难以捉摸,其生理作用尚未确定。Lundberg 在他最初的经典论文中评论说,通过检查 B 波的特征及其与其他生理参数的关系,无法就其起源得出明确的结论(10)。一项关于麻醉猫软脑膜动脉的观察性研究描述了同步的 ICP 波和血管直径波动,其发生频率(每分钟 0.5-2 次)与经典 B 波相似,支持周期性血流和血容量波动可能是 ICP B 波原因的观点,但并未给出任何有关其生理功能的迹象(11)。一些早期关于患者和正常受试者的经颅多普勒 (TCD) 超声记录的报告描述了由于 CBF 变化导致的大脑中动脉 (MCA) 速度波动,其频率范围与 Lundberg B 波相同(12、13)。我们报告了 70% 的正常受试者在休息和躺在担架上 1 小时时,MCA 速度波动的频率范围 (0.5-2 次/分钟) 和形式与 Lundberg B 波相似,并且在同一报告中描述了头部受伤患者的同步 MCA 速度和 ICP 振荡,其频率与 B 波相同 (3)。其他研究人员证实了这些结果,并进一步描述了各种环境下 MCA 流速的节律性振荡,包括头部受伤患者、正常休息志愿者以及睡眠期间 (14-18)。一些研究指出,TCD 测得的 B 波发生的频率范围比 Lundberg 在 ICP 记录中指出的更宽,并且频率比我们小组最初描述的更宽(3),因此建议将 B 波频率范围扩大到每分钟 0.33-3 个周期(0.005-0.05 Hz)(18)。其他研究人员报告称,颅内 B 波的频率高达每分钟 4 个周期(0.067 Hz)(19)。最近发表的关于通过功能性(f)MRI 结合 EEG 测量慢周期性 CBF 振荡的描述
可调天线 L3Harris RF-7850A-AT101 是一款垂直极化、低剖面 VHF/UHF 天线,工作频率范围为 30-512 MHz。AT101 专为与 L3Harris RF-7850A Falcon III 机载网络无线电配合使用而设计,坚固耐用,可在离地间隙较低的较轻平台上提供可靠的性能。这款全向天线可处理高达 25 瓦的 VHF 和 50 瓦的 UHF 功率。调谐由单独的逻辑控制单元控制。
端到端系统由一组低地球轨道卫星子星座(上游段)、地面运营基础设施(下游段)和面向意大利公共行政部门的服务(服务段)组成。基于多种不同的传感仪器和技术,IRIS 星座将是独一无二的;范围从微波成像(使用合成孔径雷达,SAR)到各种空间分辨率(从高分辨率到中分辨率)和不同频率范围的光学成像,从全色到多光谱、高光谱到红外波段。
• 增强信号处理、频率范围和瞬时带宽 (IBW) - 提高系统应对下一代 CIED 威胁和多功能 RF 要求的能力 • 通用开放和安全软件开发环境 - 降低许可成本并实现跨适用 EW 平台的技术共享 • 增强用户界面 - 开发新的直观界面以增强功能 • 分布式 EW - 与 ONR 协调拟议的无处不在的边缘 FNC • 智能资源管理 - 研究 AI/ML 定制使用系统资源并提高兼容性
1 / 0.3i…0.3C标称功率因数 /范围50,60 / 45…65额定频率 /频率范围(Hz)128最大。ac电流,imax(a)64(3个周期平均)最大AC短路电流(A RMS)25 A / 0.5毫秒Inrush电流(峰 /持续时间)<最大3。THD(%)98,6(应用标准IEC 61683)最大效率(%)160 a,gg,un = 500 v最大可允许的外部AC保险丝200 a,gr,un = 1.000 v最大可允许的外部直流保险丝
3.2.1.Ku波段服务 27 3.2.2.Ku波段调制 27 3.2.3.Ku波段卫星(位置、发射功率、增益和距离) 27 3.2.4.Ku波段频率范围和带宽 29 3.2.5.Ku波段理想天线覆盖体积 30 3.2.6.Ku波段增益 30 3.2.7.Ku波段波束宽度 30 3.2.8.Ku波段旁瓣电平 30 3.2.9.Ku波段极化 31 3.2.10.Ku波段交叉极化抑制 31 3.2.11.Ku波段所需载噪比 31 3.2.12.Ku波段G/T 31 3.2.13.Ku波段波束定位精度 31
摘要 本研究利用CRISPR/Cas9核糖核蛋白(RNP)复合体系统对康乃馨乙烯(ET)生物合成基因[1-氨基环丙烷-1-羧酸(ACC)合成酶1(ACS1)和ACC氧化酶1(ACO1)]进行编辑。首先,验证靶基因(ACS1和ACO1)的保守区域,以生成不同的单向导RNA(sgRNA),然后使用体外切割试验验证sgRNA特异性切割靶基因的能力。体外切割试验表明,sgRNA在切割各自的靶区域方面具有很高的效率。将sgRNA:Cas9复合物直接递送到康乃馨原生质体中,并对原生质体中的靶基因进行深度测序。结果表明,sgRNA 适用于编辑 ET 生物合成基因,因为 ACO1 的突变频率范围为 8.8% 至 10.8%,ACS1 的突变频率范围为 0.2–58.5%。在对用 sgRNA:Cas9 转化的原生质体产生的愈伤组织中的目标基因进行测序时,在 ACO1 中发现了不同的 indel 模式(+ 1、- 1 和 - 8 bp),在 ACS1 中发现了不同的 indel 模式(- 1、+ 1 和 + 11)。这项研究强调了 CRISPR/Cas9 RNP 复合物系统在促进康乃馨 ET 生物合成的精确基因编辑方面的潜在应用。关键词 愈伤组织,CRISPR/Cas9,乙烯生物合成基因,Indel 模式,体外裂解,原生质体
石墨烯中的表面等离子体极化子(SPP)是理论和实验研究的一个有趣领域,尤其是在石墨烯层中支持具有横向电动(TE)极化的SPP的可能性[1]。最近,使用复杂的频率方法在非零温度下[2]的扩展频率范围显示,显示了TE SPP在非零的频率范围中存在,该方法使用复杂的频率方法模拟具有时间衰减的开放系统。由于石墨烯的电导率很小,与细胞结构常数成正比[1],TE SPP频率色散非常接近光线,但由于其分散曲线位于光线下方,因此无法通过外部入射的光激发TE SPP。石墨烯以其光导率的可调节性而闻名,它通过应用合适的栅极电压来诱导易于易于的化学电位[3]。这是因为电子过渡出现在k点附近[4],其中电子色散是线性的,状态的密度消失。诸如光学调节剂[5]和极化器[6]等设备以及吸收增强设备[7,8],从这种可调性中受益,该可调性与石墨烯中TE SPP的存在一起,为等离子应用提供了令人兴奋的前景[9]。此外,使用定期石墨烯的结构打开了应用磁场时产生拓扑等离子状态的可能性[10-13]。已经研究了石墨烯[14 - 17]的周期性等离子结构,甚至是周期性石墨烯条的多层堆栈[18-22]。堆叠石墨烯二级层对横向磁性(TM)SPPS性质的影响也具有
信息和通信技术 信息和通信技术在当今社会的发展中发挥着关键作用。这项技术是为了确保每个人都能随时随地获取所需的信息。为此,必须开发移动宽带通信设施,用于从交通控制到环境和气候观测,从医疗技术到安全工程等各个领域。为了开发这些信息和通信技术,必须不断提供新的频率范围,因为新应用所需的带宽在不断增加。PTB 通过将高频、场和天线测量技术扩展到更高的频率,为行业提供标准,并研究新的通信技术(如使用太赫兹波的无线通信),支持这一发展。